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§  Kinema.cs	
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§  Equilibrium	

§  Power	and	Energy	



Introduc.on	to	Biomechanics	–	Point	
Mechanics	-	Learning	Outcomes	

§  Point	mechanics	refresher	
§  Kinema.cs,	Kine.cs,	

Equilibrium,	Power	and	Energy	
§  Mechanics	elements	–	

representa.on	

§  Ability	to	describe	and	explain:	
£  The	mechanics	of	a	mass	

concentrated	in	a	point		
£  Newton’s	laws	

§  Ability	to	solve	simple	point	
mechanics	problems	
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Aims	 Planned	learning	outcomes	

Introduc.on	to	Biomechanics	–	,	Philipp	Thurner	,	ILSB	-	TU	Wien	



	
§  Par.cle	

£  Has	mass,	size	can	be	neglected	–	geometry	not	taken	
into	account	(a	ma\er	of	rela.ve	size)	

§  Rigid	body	
£  Mass	and	size,	consider	large	collec.ve	of	par.cles	

§  Concentrated	force	
£  Effect	of	loading	assume	to	act	at	single	point	on	a	
body	

	

Idealisa.ons	
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Posi.on	of	the	point	
	
	
In	the	rotated	frame:	
	

Kinema.cs	
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x(t) = xi (t)ei
R(t) = Rij (t) ei ⊗ e j( )
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Velocity	is	the	(.me-)	deriva.ve	of	posi.on:	
	
	
Accelera.on	is	the	.me	deriva.ve	of	velocity:	
	

Velocity	and	accelera.on	
7	

v = dx
dt

vi =
dxi
dt

a = dv
dt
=

d v v
v

!

"
##

$

%
&&

dt
=
d v
dt

v
v
+ v 2

d v
v

!

"
##

$

%
&&

ds

tangen.al		
component	

normal	
component	



Parametriza.on	of	every	posi.on	by	real	numbers	
(q1	,	q2	,	q3	,	t),	such	that	
	
	
	

Generalized	coordinates	
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x1 = x1(q1,q2,q3, t)
x2 = x2 (q1,q2,q3, t)
x3 = x3(q1,q2,q3, t)



Velocity	is	.me-deriva.ve	of	posi.on	
	
	
In	cylindrical	coordinates:	
	
In	spherical	coordinates:	
	
	

Velocity	
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vi =
∂xi
∂t

+
∂xi
∂qj
qj

v = rer + r θeθ + zez

v = rer + r θeθ + rsin θ( ) φeφ
θ

φ
r	

θ r	
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Accelera.on	is	.me-deriva.ve	of	velocity	
	
	
In	cylindrical	coordinates:	
	
In	spherical	coordinates:	
	
	

Accelera.on	
10	

ai =
∂vi
∂t

+
∂vi
∂qj
qj

a = r − r θ 2( )er + rθ + 2 r θ( )eθ + zez

a = r − r θ 2 − rsin2 θ( ) φ 2( )er + rθ + 2 r θ − rsin θ( )cos θ( ) φ 2( )eθ
+ rsin θ( ) φ + 2sin θ( ) r θ + 2rcos θ( ) θ φ( )eφ
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Key	proper.es:	
§  Scalar	
§  Posi.ve		
§  Conserved	?	
	
	

Mass	
12	

m ≥ 0



The	linear	momentum	is	the	product	of	mass	with	
velocity:	
	
with	units		kg	m/s	
	
When	mass	is	conserved:		
	
	

Linear	momentum	
13	

p =mv

p =
d mr( )
dt



Consider	a	par.cle	with	mass	m	on	a	circular	
trajectory	with	constant	speed	v:	
	
From	cylindrical	coordinates	we	know:	
	
	
Angular	momentum:		
	
	

Angular	momentum	
14	

p =mv =mrωeθ
e1 

e2 

v 

r 
a 

a = −rω 2er

r = rer t( ) θ =ωt

v = rωeθ

L = r×p = r( )er × mrω( )eθ = mr2ω( )ez
L = I ωez( )

m 



I	is	the	moment	of	iner.a	(generally	a	second	rank	
tensor)	in	the	case	of	a	point	mass	on	circular	trajectory	
it	reduces	to:	
	
	
Generally	we	can	also	write:	
	
As:	
	
The	pseudo-vectors	L	and	ω point	in	x3	direc.on	

Angular	momentum	
15	

I =mr2

e2 

e3 

v 
r a 

e1 

L , ω

 !r =ω × r

ω × r =ωez × rer =ωr ez × er( ) =ωreθ



External	ac.on	on	a	system	which	leads	to	a	change	
of	the	original	state	or	a	change	of	mo.on	
	
Characteris.cs:	
§  Intensity	
§  Direc.on	
§  Sign	
	
	

Forces	
16	



	
	
	
	
	
Iner.a:	the	higher	the	mass	the	lower	accelera.on	
due	to	applica.on	of	a	given	force	

Forces:	iner.a	
17	

m f 

a 

f =ma =mx



	
	
	
	
	
	
	
Force	propor.onal	to	accelera.on	of	gravity		

Forces:	gravity	
18	

f 

f =mg



§  Forces	ac.ng	on	materials	can	lead	to	
different	behavior	

§  Dependent	on	material	proper.es	
§  Elas.c	or	inelas.c	

§  Elas.c	–	full	recoil,	resilient	
§  Inelas.c	–	does	not	reach	ini.al	configura.on	ader	
unloading	

§  Can	use	rheological	element	or	combina.on	
to	describe	overall	behaviour	

Forces:	rheological	elements	
19	



	
	
	
	
	
	
Force	varies	linearly	with	elonga.on	–	linear	elas.c	
element	

Forces	-	rheological	elements:	spring	
20	

-f 

f = −kx

x 



	
	
	
	
	
	
Force	varies	linearly	with	velocity	–	viscoelas.c	
(inelas.c)	element	

Forces	-	rheological	elements:	dashpot	/	
damper	
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-f f = −Dx
v 



	
	
	
	
	
	
Force	is	constant	upon	presence	of	force	and	
antagonis.c	–	plas.c	(inelas.c)	element	

Forces	-	rheological	elements:	slider	
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-f 
f = −µ x

x

v 
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First	law	–	body	remain	at	rest	or	con.nue	uniform	
mo.on	on	straight	line	unless	external	force	present	
	
	
Second	law	–	external	force	causes	accelera.on	
	
	
Third	law	–	ac.o	=	reac.o	

Newton’s	laws	of	mechanics	
24	

dp
dt

= 0⇔ i f
i
∑ = 0

dp
dt

= i f
i
∑

actio f = − ji f
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A	force	does	work	when	it	undergoes	a	displacement	
in	the	direc.on	of	its	line	of	ac.on:	
	
	
Power	is	the	rate	of	work	done	per	unit	.me:	
	
	
Or	in	other	words:	this	is	the	power	developed	by	a	
force	bound	to	a	posi.on	x		
	
	

Work	
26	

  W = f ⋅x

  
P = dW

dt
= f dx

dt
= f ⋅ v

  dW = f ⋅ dx



With	Power	being:	
	
	
Force	is	the	conjugate	variable	of	velocity	for	power.	
	
Work	done	by	external	forces	in	interval	[t0	,	t]	is		

Power	and	work	
27	

    
P = f ⋅ v = f ⋅ !x = ma ⋅ v = mv ⋅ dv

dt
=

d
dt

1
2

mv2
⎛
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⎠
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ΔW = P τ( )
t0

t

∫ dτ



Conserva.ve	forces	are	defined	by	
	
	
This	means	a	poten.al	func.on	U	exists	such	that	
	
The	force	f	derives	from	a	poten.al	U,	which	
contributes	to	the	poten.al	energy:	

Poten.al	energy	
28	

f dx = 0∫

f x( ) = −∇U x( )

potE x( ) = iU x( )
i
∑



Consider	case	of	spring	element	–	spring	oriented	
parallel	to	x-direc.on	(x1):	
	
	
	
The	force	derived	from	the	poten.al	
	
	

Poten.al	energy	
29	

f (x) = −kx

f dx∫ = −kx dx∫ = 0

potE x( ) = 1
2
kx2



Consider	gravity	
	
	
	
The	force	derived	from	the	poten.al	
	
	

Poten.al	energy	
30	

mgdx∫ = 0

potE x( ) = −mg ⋅x

f =mg



The	kine.c	energy	is	defined	as	
	
	
The	theorem	of	the	kine.c	energy	is	
	
	
	
Where	ncP	is	the	power	dissipated	by	non-
conserva.ve	forces	

Energy	
31	

kinE x( ) = 1
2
m v 2

d kinE
dt

= −
d
dt

iU x( )
i
∑ + ncP



Mechanical	energy	is	the	sum	of	kine.c	and	
poten.al	energy	
	
The	theorem	of	mechanical	energy	hence	denotes	

Mechanical	energy	
32	

mecE = kinE + potE

d mecE
dt

= ncP



Energy	is	conserved	if	all	forces	are	conserva.ve	
	
	
	
This	means	that	varia.ons	of	kine.c	and	poten.al	
energy	are	opposed	
	

Conserva.on	of	energy	
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d mecE
dt

= ncP = 0 mecE t( ) = mecE t0( ) ∀t

d mecE
dt

= −
d potE
dt



Energy	is	not	conserved	if	a	force	is	not	conserva.ve,	
e.g.	dashpot	/	damper	
	
	
	
or	slider	

Dissipa.on	of	energy	
34	

f dx∫ = −Dx dx∫ = −D x 2 dτ∫ = 0⇔ x ≡ 0

f dx∫ = −µ
x
x
dx∫ = −µ x dτ∫ = 0⇔ x ≡ 0

ncP = D x 2
≥ 0

ncP = µ x ≥ 0



The	forces	and	the	laws	of	equilibrium	are	invariant	
with	respect	to	Galilean	transforma.on,	i.e.	change	
of	reference	system	that	is	uniform	mo.on	with	
respect	to	the	original	one.	
	
So	the	forces	and	laws	will	be	equivalent	for	two	
observers	in	uniform	mo.on	with	respect	to	each	
other.	

Galilean	rela.vity	principle	
35	



§  Kinema.cs	–	posi.on,	velocity,	accelera.on	

§  Kine.cs	–	mass,	linear,	angular	momentum,	forces	

§  Equilibrium	–	Newton’s	laws	

§  Power	and	energy	–	work,	conserva.ve	vs.	
dissipa.ve	forces,	poten.al	energy	

Summary	
36	


