38

39

42

48

Inhaltnverzeichnis

8	Tragwerksanalyse	3	11.1	Bögen - Grundlagen
8.1	Ermittlung der Einwirkungen (EW)	3	11.2	Bogenform - Stützlinie
8.2	Tragwerksmodell	4	11.3	Auflager und Bogenkräfte
8.2.1	Vorgehensweise bei der Modellbildung	5	12	Seiltragwerke – Prinzip der Vorspannung
8.2.2	Systemachsen	8		
8.2.3	Randbedingungen	9		
8.2.4	Gekoppelte (mehrteilige) Tragwerke	12		
8.3	Wahl eines geeigneten Berechnungsverfahrens	16		
8.3.1	Physikalische Nichtlinearität (Werkstoffverhalten)	17		
8.3.2	Geometrische Nichtlinearität (Verformungsgeometrie)	19		
8.3.3	"Kontakt" Nichtlinearität	21		
8.3.4	Zusammenfassung	22		
9	Stabilitätsversagen "Knicken"	23		
9.1	Eulerfälle des Knickstabes	25		
9.1.1	Stabilitätsnachweis	27		
10	Arten von Tragwerke	31		
10.1	Unterspannter Träger	32		
10.1.1	Formen von unterspannten Trägern	35		
10.1.2	Lastabtragung - Stabilisierung	36		
11	Bogentragwerke	37		

8 Tragwerksanalyse

8.1 Ermittlung der Einwirkungen (EW)

--> siehe TWL - Grundlagen – Begleitskript – Kapitel 2

8.2 Tragwerksmodell

Die Idealisierung, sprich die Umsetzung der wirklichen Konstruktion in ein Rechenmodell zur Beschreibung des wesentlichen Tragverhaltens, ist eine der anspruchsvollsten Aufgaben im Entwurfsprozess von Tragwerken.

Grundprinzip: Abbildung der wesentlichen Tragwerksteile/Tragwerksverhalten

- 8.2: Vorgehensweise bei der Modellbildung (Systemidealisierung)
- **8.3**: Wahl eines geeigneten Rechenverfahrens

Modellbildung unter dem Gesichtspunkt - So einfach wie möglich und so genau wie nötig - Beispiel: Wurf eines Steines, mit oder ohne Luftwiderstand?

Anmerkung:

- Grenzwertbetrachtungen aufgrund vom Material- und Lastungenauigkeiten können hilfreich sein
- Ergebnisse können nie präziser sein als die Eingabedaten für das Modell


8.2.1 Vorgehensweise bei der Modellbildung

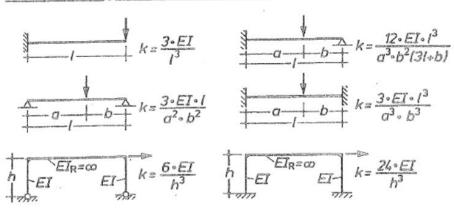
- a) Erstellen eines statischen Systems (Ersatzmodell des realen Tragwerks)
- b) Aufstellen von Lasten, Lastfällen und Lastfallkombinationen (siehe TWL Grundlagen Begleitskript Kapitel 2)
- c) Materialwahl mit Materialkennwerten (begleitend, bzw. Fachvorlesungen)

zu a) Erstellen eines statischen Systems am "Baukastenprinzip":

Die Abbildung dreidimensionaler Tragwerke (Gesamtsysteme) erfolgt meist durch die schrittweise Rückführung auf einzelne Teilsysteme (Stützen, Träger, Wände, Decken,...) und deren Tragelemente (Stäbe, Balken, Scheiben, Platten,...). → "Baukastenprinzip";

vgl. auch TWL - Grundlagen - Begleitskript (WS 2019), Seite 33

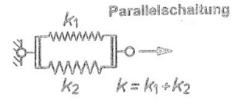
Anm.:

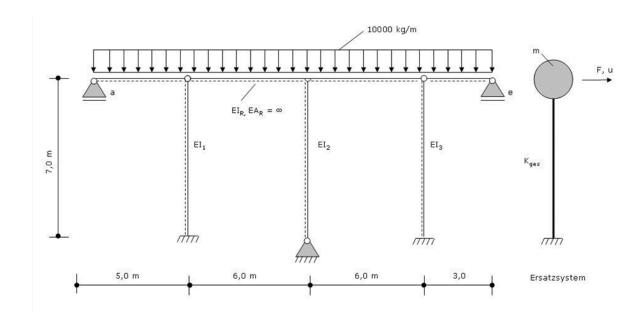

Elemente FE- Programm. RStab (Dlubal):

- Balken
- Fachwerkstab
- Zugstab
- .
- Seil
- Feder
- USW.

Abbildung 8.1: "Baukastenprinzip"

Federersatzsysteme:


Federsteifigkeit von Grundelementen

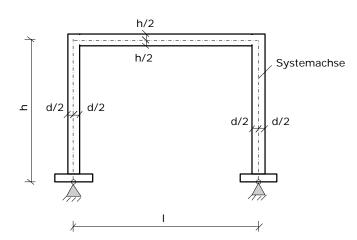

Federkopplungen

Serienschaltung

$$k = \frac{1}{1/k_1 + 1/k_2} = \frac{k_1 k_2}{k_1 + k_2}$$

Beispiel: Statisches System - Ersatzmodell

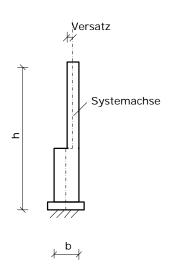
Gesucht:


- 1. Wie groß sind die Normalkräfte in den Stützen?
- 2. Berechnen Sie die Gesamtsteifigkeit K_{ges} für das Ersatzsystem in Bezug auf die horizontale Verschiebung u.
- 3. Wie groß ist die Verschiebung u aufgrund der Horizontallast F = 10 kN?
- 4. Berechnen Sie die 1. Eigenfrequenz des Bauwerks in horizontaler Richtung.

Übung !!!

Allge.: <u>Ersatzsystem-01.rs8</u> Lösung: <u>Ersatzsystem-02.rs8</u>

8.2.2 Systemachsen



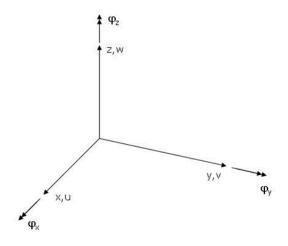

Abbildung 8.2: Systemachse eines Zweigelenkrahmen

Abbildung 8.3: Wand mit unterschiedlichem Querschnitt

Als Systemachse eines Tragwerks oder Tragwerkteils wir im Allgemeinen die Querschnittsachse (Schwerachse) verwendet. Die Schwerachse ist damit die Verbindungslinie der Schwerpunkte aller Querschnitte eines Tragwerks. Die zu berechnenden Schnittgrößen sind auf die Schwerachsen bezogen.

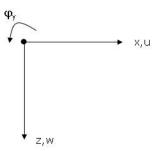
8.2.3 Randbedingungen

FHG für 3D-Stabwerke:

Ein starrer Körper im Raum besitzt sechs Verschiebungsmöglichkeiten (Freiheitsgrade FHG):

- drei Translationen (u,v,w)
- drei Rotationen (φx,φy,φz)

Abbildung 8.4: Kartesisches Koordinatensystem im Raum


Anmerkungen:

- für die Bildung eines statischen Modells ist die genaue Festlegung der Randbedingungen von großem Einfluss. Mittels der Variation der Randbedingungen kann das Tragverhalten der Gesamtkonstruktion und seiner Teile beeinflusst werden
- die Festlegungen der Randbedingungen stellen wie die gesamte Modellierung eine Idealisierung der Realität dar
- die Festlegung der Federsteifigkeiten bei elastischer Lagerung ist oftmals nur sehr schwierig zu bestimmen

FHG für 2D-Stabwerke in der x-z-Ebene:

Tabelle 8.1: Schematische Darstellungen der Randbedingungen (x/z-Ebene)

Auflagerart	Symbol	Pendelstäbe	kinematisch Bedingungen	Auflager- reaktionen	Anzahl der Unbekannten Lager- reaktionen (r)
verschieblich (einwertig) 1 FHG gesperrt	<u></u>		$u \neq 0$ $w = 0$ $\varphi_y \neq 0$	$F_{X} = 0$ $F_{Z} \neq 0$ $M_{Y} = 0$	r=1
fest (zweiwertig) 2 FHG gesperrt			$u = 0$ $w = 0$ $\phi_y \neq 0$	$F_{x} \neq 0$ $F_{z} \neq 0$ $M_{y} = 0$	r=2
eingespannt (dreiwertig) 3 FHG gesperrt	7		$u = 0$ $w = 0$ $\phi_y = 0$	$F_{X} \neq 0$ $F_{Z} \neq 0$ $M_{y} \neq 0$	r=3

Ein starrer Körper in der Ebene besitzt drei Verschiebungsmöglichkeiten (Freiheitsgrade FHG):

- zwei Translationen (u,w)
- eine Rotationen (φ_y)

Merke:

Kinematische Bedingungen und Lagerreaktionen sind voneinander abhängig.

Ist eine Verschiebungsgröße (FHG) gesperrt (u=0) dann folgt die zugehörige Lagerreaktion aus der Rechnung ($F_X \neq 0$). Beide Größen können nicht gleichzeitig vorgegeben werden!

Ausnahme – elastische Lagerung :

Kräfte/Translation: $F_x = k_f^u u$, $F_z = k_f^w w$

Momente/Rotation: $M_y = k_f^{\phi} \phi$

 $\boldsymbol{k}_f := \text{Federsteifigkeit}$

[Kraft/Länge],[Moment/Verdrehung]

Statische bestimmt gelagerte Tragwerke:

Tragwerke bei denen die Lagerreaktionen aus den drei Gleichgewichtsbedingungen ermittelt werden können, nennt man "statisch bestimmte gelagert" Tragwerke. Für die Ebene gilt:

$$\left. \begin{array}{l} \sum F_{i,x} = 0 \\ \sum F_{i,z} = 0 \\ \sum M_{i,y} = 0 \end{array} \right\} \; \text{3 Gleichungen} \; \rightarrow \; \text{Lagerreaktionen}$$

Die drei Gleichungen stehen den drei Bewegungsmöglichkeiten (drei Freiheitsgrade FHG's) gegenüber.

Die Notwendige –aber nicht hinreichende– Bedingungsgleichung der statischen Bestimmtheit lautet:

$$f = 3 - r \tag{8.1}$$

3 := Anzahl der FHG's in der Ebene

r := Anzahl der unbekannten Lagerreaktionen

f > 0 : System ist unbrauchbar, da beweglich

f = 0 : System ist stat. best. gelagert

f < 0: System ist stat. unbestimmt gelagert

mit

x = -f = r-3, x := Grad der stat. Unbestimmtheit

Abbildung 8.5: Elastomerlager - horizontal beweglich

Abbildung 8.6: Köcherfundament - Einspannung

8.2.4 Gekoppelte (mehrteilige) Tragwerke

Ein Tragwerk besteht im Allgemeinen aus einer Vielzahl einzelner Tragwerkssysteme und diese wiederum aus einer Vielzahl von Tragwerkselementen. Sie müssen in geeigneter Weise mittels Verbindungselementen (Kopplungen) zusammengesetzt werden.

Die Verbindungselemente übertragen auftretende Kräfte und Momente, diese können durch Schnitte sichtbar gemacht werden. Wir wollen uns hier auf Kopplungen ebener Tragwerke beschränken.

Tabelle 8.2: Schematische Darstellungen einiger Koppelbedingungen (x/z-Ebene)

Koppel-Typ	Symbol	kinematisch	Schnittkräfte	Anzahl der
		Bedingungen		unbekannten
				Verbindungskräfte (V)
			N = O	
Normalkraft- Gelenk	— —	u _{li} ≠ u _{re}	V ≠ 0	V=2
Gelenk			M ≠ O	
			N ≠ O	
Querkraft-		w _{li} ≠ w _{re}	V = 0	v=2
Gelenk	13.	(Sprung)	M ≠ O	
			N ≠ O	
Momenten-		Φli ≠ Φre	V ≠ 0	V=2
Gelenk		(Knick)	M = 0	
			N ≠ O	
Pendelstab	\$	w _{li} ≠ w _{re}	V = 0	v=1
	7		M = 0	

Statische Bestimmtheit bei mehrteiligen Tragwerken:

Die Notwendige –aber nicht hinreichende– Bedingungsgleichung der statischen Bestimmtheit bei mehrteiligen Tragwerken lautet:

$$f = 3 n - (r + v)$$
 (8.2)

3 := Anzahl der FHG's in der Ebene

n := Anzahl der Tragwerksteile

r := Anzahl der unbekannten Lagerreaktionen

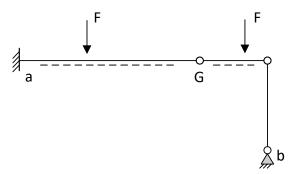
v := Anzahl der unbekannten Verbindungskräfte

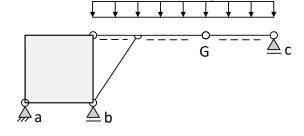
f > 0 : System ist unbrauchbar, da beweglich

f = 0 : System ist stat. best. gelagert

f < 0 : System ist stat. unbestimmt gelagert

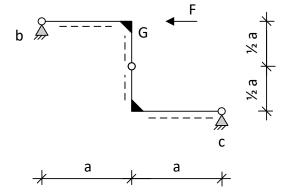
mit


$$x = -f = (r+v) -3n$$
 (8.3)


x := Grad der stat. Unbestimmtheit

d.h.: Das Tragwerk ist "statisch bestimmt gelagert", wenn aus den 3n Gleichgewichtsbedingungen die r Lagerreaktionen und die v Bindekräfte berechnet werden können!

Beispiele zur Berechnung der statischen Bestimmtheit:


Beispiele:

a) <u>RSTAB</u>

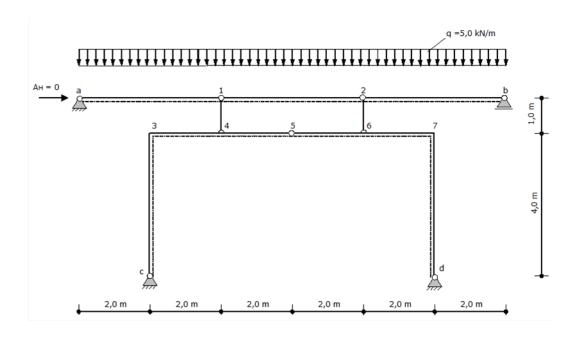

c) <u>RSTAB</u>

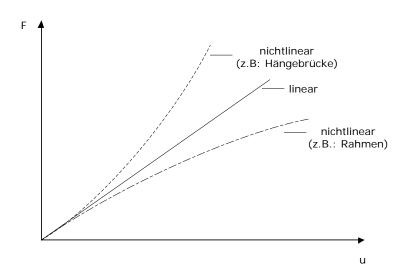
Abbildung 8.7: Statisch bestimmte gelagerte Systeme

<u>Übung !!!</u>

Beispiel: Mehrteiliges Tragwerk

Gesucht:

- 1. Bestimmen Sie für das gegebene System die Auflagerkräfte.
- 2. Bestimmen Sie die maßgebenden Schnittgrößen und skizzieren Sie den Momenten-, Querkraftund Normalkraftverlauf des Systems.

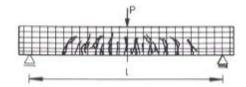


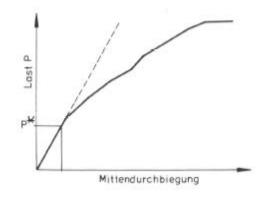
Übung !!!

Lösung: <u>Beispiel-02.rs8</u>

8.3 Wahl eines geeigneten Berechnungsverfahrens

Ein mechanisches System weist ein lineares Verhalten auf, wenn die Verschiebungsgrößen (u) des Systems mit wachsender Belastung (steigern der Kraftgröße (F)) linear zunehmen.

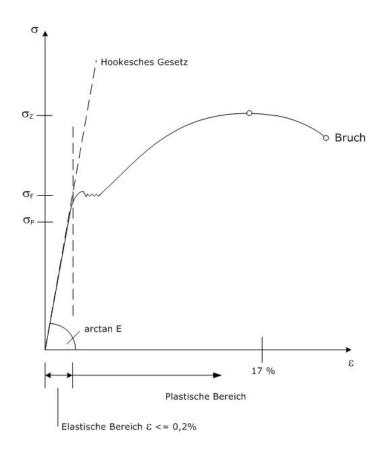

 $\frac{F}{u} = konst. \rightarrow lineares \ System Verhalten$


Abbildung 8.8: Kraft – Verschiebungs - Diagramm

Das wirkliche Tragverhalten von Bauwerken (Systemen) unterliegt in vielen Fällen nicht dieser linearen Gesetzmäßigkeit, so tritt beispielsweise bei druckbeanspruchten Bauteilen (Stützen, Rahmen, Bögen, Schalen, usw.) ein nichtlinearer Zusammenhang zwischen Laststeigerung und den daraus folgenden Verformungen auf. Die Ursachen des nichtlinearen Tragverhaltens werden nachfolgen wie folgt unterteilt; physikalische, geometrische, "Kontakt" – Nichtlinearität.

8.3.1 Physikalische Nichtlinearität (Werkstoffverhalten)

Beispiel: Betonbalken auf 2 Stützen genannt



P* := Gebrauchslastbereich

-- := linearisiertes Tragverhalten

Abbildung 8.9: Spannungs-Dehnungs-Diagramm für einen Stahlbetonbalken (Vereinfacht Darstellung!)

Beispiel: Zugstab aus Stahl dargestellt.

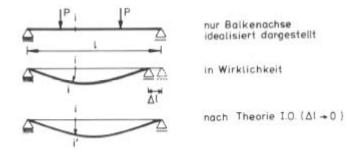
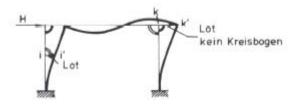


Abbildung 8.10: Spannungs-Dehnungs-Diagramm für einen Zugstab aus Stahl (Vereinfacht Darstellung!)


Legende:

- $\sigma_P := \text{Proportionalitätsgrenze}$ (Dehngrenze): $\epsilon_P \sim 0.01\%$ für $0 \le \sigma \le \sigma_P$ -> $\sigma/\epsilon = \text{konstant proportional}$ für $\sigma > \sigma_P$ -> $\sigma/\epsilon \ne \text{konstant nicht proportional}$
- $\sigma_F:=$ Streck- oder Fließgrenze, die Dehnungen wachsen bei gleichbleibender Spannung. Plastischer Bereich $\epsilon_P\sim 0.2$ %, $f_{y,k}:=$ Streckgrenze
 - σ_Z := Spannung die sich aus der max. Zugkraft in Bezug auf den Ausgangsquerschnitt ergibt. $f_{u,k}:=$ Zugfestigkeit

8.3.2 Geometrische Nichtlinearität (Verformungsgeometrie)

(a) Balken mit Einzellasten

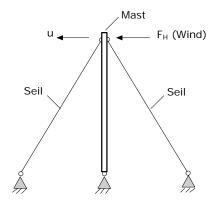
(b) Rahmen unter Horizontalbelastung

Abbildung 8.11: Verschiebungsfiguren unter Annahmen der linearen Theorie I. Ordnung.¹

¹ Auszug aus "Stabtragwerke Teil 1", Uni Stuttgart, Prof. Ramm, nur für Lehrzwecke!

8.3.2.1 Definitionen der Theorien I., II. und II Ordnung

c) Theorie III. Ordnung a) Theorie I. Ordnung b) Theorie II. Ordnung F_v F_H h h Gleichgewicht am unverformten Gleichgewicht am verformten System; Gleichgewicht am verformten System; System; d.h.: die Verformung f wird d.h.: die Verformung f wird beim d.h.: die Verformung f wird beim Aufstellen der Gleichgewichtsbedinbeim Aufstellen der Aufstellen der Gleichgewichtsbedin-Gleichgewichtsbedingungen nicht gungen berücksichtigt! gungen berücksichtigt! berücksichtigt! Verformungen sind klein gegenüber $\Sigma H = 0$: Genaue Geometrie wird berückden Tragwerksabmessungen sichtigt, keine Linearisierung! $\sum V = 0$: $f \le a$, b (Querschnittsabmessungen) Verformung nicht mehr klein gegen- $\sum M = 0$: linearisiert! über den Abmessungen


Merke:

Die Superposition der Lastfälle ist nur für die Theorie I. Ordnung zulässig. Für die Berechnung unter Verwendung der Theorie II. und III. Ordnung ist die γ - fache Gesamtlast in einem Lastfall aufzubringen.

Beispiel: Theorie I-III-Ord.

8.3.3 "Kontakt" Nichtlinearität

Tragwerke können unter Belastung oder in verschiedenen Bauphasen ihr statisches System wechseln. In der Belastungs- bzw. Entstehungsgeschichte treten dann nichtlineare Effekte auf.

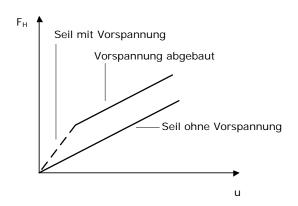


Abbildung 8.12: Mast mit Seilabspanngen

Abbildung 8.13: Kraft- Verschiebungs - Diagramm

Siehe auch Kapitel 12 Seiltragwerke – Prinzip der Vorspannung

Beispiel: Kontakt-Nichtlinearität

8.3.4 Zusammenfassung wirkliches Tragverhalten Verfahren: z.B. physikalisch- und ja Systeme mit Th. II – III. Ordnung geometrisch nichtlineares (Seiltragwerke) veränderlichen Gliedern Tragwerksverhalten Fließgelenkth.(Stahl) physikalisch- und physikalisch geometrisch geometrisch nichtlineares nichtlineares lineares Tragwerksverhalten Tragwerksverhalten Tragwerksverhalten Verfahren: Verfahren: z.B. z.B. Fließgelenktheorie Th. II. – III. Ordnung (Stahlbau) Sonderfall: Theorie Th. II. Ordnung I. Ordnung Stabilitätstheorie z.B.: Knicken

Abbildung 8.14: Linearisierung des Rechenverfahrens

9 Stabilitätsversagen "Knicken"

Für die heutigen Hochleistungsmaterialen ist das Stabilitätsversagen - auf Druck - beanspruchten Bauteilen eine der maßgebenden Versagensarten bei Tragwerken. Die hohen Festigkeiten führen dabei zu immer schlankeren und damit "knickgefährdeten" Bauteilen. Nachfolgend sind die wesentlichen Versagensformen dargestellt.

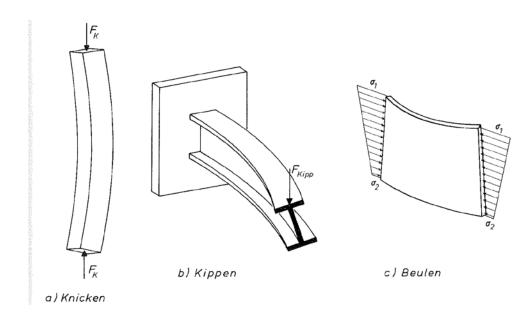


Abbildung 9.1: Grenzfälle der Stabilität²

- a) Knicken Biege-, Drill-, Biegedrillknicken
- b) Kippen
- c) Beulen

Anmerkung:

Das nachfolgend dargestellte Stabilitätsversagen ist nicht mit der Stand – und Kipp-sicherheit, wie es beispiels-weise bei einer Stützmauer zu untersuchen ist, zu verwechseln. Kippen einer Stützmauer, kein Verzweigungsproblem.

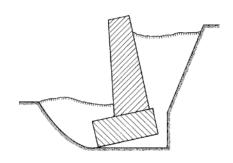


Abb. 9.2: Stützmauer

 $^{^{2}}$ Auszug aus "Statik 2", Böhm, Fritsch, Manz-Verlag, Wien 1993, nur für Lehrzwecke!

Spannungsversagen:

Einhaltung vorgeschriebener Beanspruchbarkeit.

$$\frac{\sigma_{\rm d}}{\sigma_{\rm Rd}} \le 1 \text{ oder } \sigma_{\rm d} = \frac{N_{\rm d}}{A} \le \sigma_{\rm R,d}$$
 (9.1)

Die Tragfähigkeit ist somit nur von der Querschnittsfläche A und der Beanspruchbarkeit $\sigma_{R,d}$ abhängig. Der Nachweis gilt für Zugstäbe unabhängig von der Länge und der Querschnittsform des Stabes.

Stabilitätsversagen "Knicken":

Gewährleistung des Gleichgewichts in einem Tragwerk.

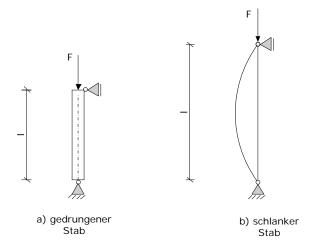


Abb. 9.3: a) Spannungsversagen,
Kicken nicht maßgebend
b) Stabilitätsversagen,
Knicken maßgebend

Folgerung:

Das Tragverhalten eines "schlanken" auf Druck beanspruchten Stabes hängt nicht nur mehr vom Material (der Beanspruchbarkeit) und der Querschnittsfläche A, sondern auch von

- der Querschnittsform
- der Stablänge und
- der Lagerungsart ab.

9.1 Eulerfälle des Knickstabes

Für den Knickstab sind vier Lagerungsarten mit unterschiedlichen Knicklasten von Bedeutung. Nach L. Euler (1707 – 1783) nennt man diese auch die vier Eulerfälle des Knickstabes.

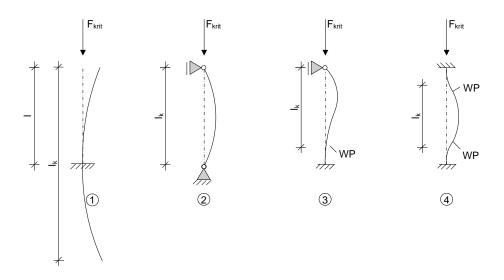


Abbildung 9.4: Die vier Eulerfälle des Knickstabes

$$F_{krit} = \pi^2 \frac{EI_{y,z}}{I_k^2}$$
 := kritische Last oder Knicklast (9.2)

F_{krit} := ideale Knicklast (Grenztragkraft -> idealer gerader Stab knickt aus)

 $EI_{y,z}$:= Biegesteifigkeit des Knickstabes (um die y- oder z-Achse)

 $I_k = \beta I := Knicklänge, mit \beta$ (Knicklängenbeiwert) von links nach rechts $[\beta = 2 \mid 1 \mid \sim 0.7 \mid 0.5]$

Beispiel: Eulerfälle

Dividiert man die ideale Knicklast F_{krit} durch die Querschnittsfläche A, so erhält man die ideale Knickspannung:

$$\sigma_{krit} = \frac{F_{krit}}{A} = \pi^2 \frac{EI_{y,z}}{I_k^2 A}$$
 (9.3a)

mit $i_{y,z} = \sqrt{\frac{I_{y,z}}{A}}$:= Trägheitsradius

bzw. $i_{y,z}^2 = \frac{I_{y,z}}{A}$ folgt mit $\lambda_{y,z} = \frac{I_k}{i_{y,z}}$:

$$\sigma_{\rm krit} = \frac{\pi^2 E}{\lambda_{\rm y,z}^2}$$
 := ideale Knickspannungen (9.3b)

$$\lambda_{y,z} = \frac{I_k}{I_{y,z}}$$
 := Schlankheitsgrad (9.4)

Anmerkung:

Das Verhältnis der Knicklänge zum Trägheitsradius (Gl.6.4) stellt den Schlankheitsgrad λ dar. Er ist ein Maß der Knickempfindlichkeit eines Stabes in Abhängigkeit von seiner Stablänge, Lagerungsart, Querschnittsgröße und Querschnittsform.

Bei gleicher Knicklänge erfolgt das Ausknicken des Stabes stets rechtwinklig zur schwächeren Achse.

Der größere Schlankheitsgrad $\lambda_y = \frac{I_{k,y}}{i_y}$, $\lambda_z = \frac{I_{k,z}}{i_z}$ ist maßgebend.

9.1.1 Stabilitätsnachweis

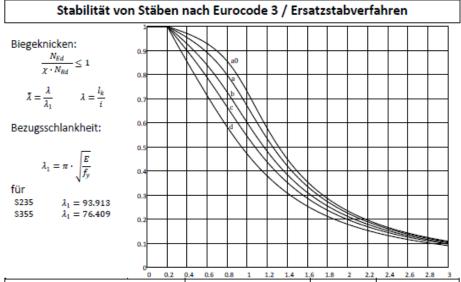
Die entsprechenden Vorschriften der Werkstoffe sind zu beachten. Die nachfolgenden Gleichungen beziehen sich auf das Versagen von Knickstäben im Stahlbau, ÖNORM EN 1993-1-1.

$$\frac{N_{E,d}}{\chi N_{R,d}} = \frac{N_d}{\chi N_{R,d}} \le 1 \tag{9.5}$$

N_{E,d} := Bemessungswert der Druckkraft (Beanspruchung)

 $N_{R,d}$: = Bemessungswert Beanspruchbarkeit

χ := Abminderungsfaktor für Biegeknicken

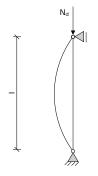

$$N_{R,d} = \frac{A f_{y,k}}{\gamma_{M1}} \tag{9.6}$$

A := Querschnittsfläche

 $f_{y,k}$:= Streckgrenze nach Stahlsorte, z.B: S 235, Fe 360 f_y = 235 N/mm² mit t \leq 40 mm

 $\gamma_{M1} \ := \ Teilsicherheitsbeiwert \ für \ die \ Beanspruchung;$

 γ_{M1} = 1 bzw 1,1 (Hochbau, Abhängig vom nationalen Anhang)


				Ausweichen	Biegeknicklinie	
	Querschnitt		Begrenzungen	rechtwinkelig zur Achse	S 235 bis S 420	S 460
nitte	aitte		$t_f \leq 40mm$	y - y z - z	a b	a0 a0
Gewalzte F.Querschnitte	h yy	h/b > 1.2	$40mm < t_f \leq 100$	y - y z - z	b c	a a
alzte FO		$h/b \le 1.2$	$t_f \leq 100mm$	y - y z - z	b c	a a
Gewä	, b		$t_f > 100mm$	y - y z - z	d d	c c
Geschw. I- Querschn.	*1, **1,		$t_f \leq 40mm$	y - y z - z	b c	b c
Gescl	' " "	$t_f > 40mm$		y - y z - z	c d	c d
Hohlquer- schnitte			warmgefertigte	jede	a	a0
Hohle			kaltgefertigte	jede	С	c
U, T und Voll – querschn.				jede	c	c

Abminderungsfaktor	χ für Biegeknicken und BDK im allgemeinen Fall in Abhängigkeit von $ar{\lambda}$	Ŀ

χ 0.99	a0										
0.99		a	b	С	d	χ	a0	a	b	c	d
0	0.27	0.25	0.23	0.22	0.21	0.54	1.25	1.18	1.09	1.00	0.87
0.98	0.34	0.29	0.26	0.24	0.23	0.53	1.26	1.20	1.11	1.02	0.88
0.97	0.40	0.33	0.28	0.26	0.24	0.52	1.28	1.22	1.13	1.03	0.90
0.96	0.46	0.37	0.31	0.28	0.25	0.51	1.29	1.23	1.14	1.05	0.92
0.95	0.51	0.41	0.34	0.30	0.26	0.50	1.31	1.25	1.16	1.07	0.94
0.94	0.55	0.45	0.36	0.32	0.28	0.49	1.32	1.27	1.18	1.09	0.96
0.93	0.59	0.48	0.39	0.34	0.29	0.48	1.34	1.28	1.20	1.11	0.98
0.92	0.63	0.51	0.42	0.36	0.30	0.47	1.36	1.30	1.22	1.13	0.99
0.91	0.66	0.54	0.44	0.38	0.32	0.46	1.38	1.32	1.23	1.15	1.01
0.90	0.69	0.57	0.46	0.39	0.33	0.45	1.39	1.34	1.25	1.17	1.03
0.89	0.72	0.60	0.49	0.41	0.35	0.44	1.41	1.36	1.27	1.19	1.05
0.88	0.74	0.63	0.51	0.43	0.36	0.43	1.43	1.38	1.29	1.21	1.08
0.87	0.76	0.65	0.53	0.45	0.37	0.42	1.45	1.40	1.31	1.23	1.10
0.86	0.79	0.67	0.55	0.47	0.39	0.41	1.47	1.42	1.34	1.25	1.12
0.85	0.81	0.70	0.57	0.49	0.40	0.40	1.49	1.44	1.36	1.27	1.14
0.84	0.83	0.70	0.59			0.39			1.38	1.30	
0.84	0.84	0.74	0.61	0.51 0.52	0.41		1.51	1.46	1.40	1.32	1.17
						0.38					1.19
0.82	0.86	0.76	0.63	0.54	0.44	0.37	1.56	1.51	1.43	1.35	1.22
0.81	0.88	0.77	0.65	0.56	0.46	0.36	1.58	1.53	1.45	1.37	1.24
0.80	0.89	0.79	0.67	0.58	0.47	0.35	1.61	1.56	1.48	1.40	1.27
0.79	0.91	0.81	0.69	0.59	0.48	0.34	1.63	1.58	1.51	1.43	1.30
0.78	0.92	0.83	0.71	0.61	0.50	0.33	1.66	1.61	1.53	1.45	1.32
0.77	0.94	0.84	0.72	0.63	0.51	0.32	1.69	1.64	1.56	1.48	1.35
0.76	0.95	0.86	0.74	0.64	0.53	0.31	1.71	1.67	1.59	1.51	1.39
0.75	0.97	0.88	0.76	0.66	0.54	0.30	1.75	1.70	1.63	1.55	1.42
0.74	0.98	0.89	0.77	0.68	0.56	0.29	1.78	1.73	1.66	1.58	1.45
0.73	0.99	0.91	0.79	0.69	0.57	0.28	1.81	1.76	1.69	1.62	1.49
0.72	1.01	0.92	0.81	0.71	0.59	0.27	1.85	1.80	1.73	1.65	1.52
0.71	1.02	0.94	0.82	0.72	0.60	0.26	1.88	1.84	1.77	1.69	1.56
0.70	1.03	0.95	0.84	0.74	0.61	0.25	1.92	1.88	1.81	1.73	1.61
0.69	1.05	0.96	0.85	0.76	0.63	0.24	1.97	1.92	1.85	1.78	1.65
0.68	1.06	0.98	0.87	0.77	0.64	0.23	2.01	1.97	1.90	1.82	1.69
0.67	1.07	0.99	0.89	0.79	0.66	0.22	2.06	2.01	1.95	1.87	1.74
0.66	1.08	1.01	0.90	0.80	0.67	0.21	2.11	2.07	2.00	1.92	1.80
0.65	1.10	1.02	0.92	0.82	0.69	0.20	2.16	2.12	2.05	1.98	1.85
0.64	1.11	1.04	0.93	0.84	0.70	0.19	2.22	2.18	2.11	2.04	1.91
0.63	1.12	1.05	0.95	0.85	0.72	0.18	2.29	2.24	2.18	2.10	1.98
0.62	1.14	1.07	0.96	0.87	0.74	0.17	2.35	2.31	2.25	2.17	2.05
0.61	1.15	1.08	0.98	0.88	0.75	0.16	2.43	2.39	2.32	2.25	2.12
0.60	1.16	1.09	1.00	0.90	0.77	0.15	2.51	2.47	2.41	2.33	2.21
0.59	1.18	1.11	1.01	0.92	0.78	0.14	2.60	2.56	2.50	2.42	2.30
0.58	1.19	1.12	1.03	0.93	0.80	0.13	2.71	2.66	2.60	2.53	2.40
0.57	1.20	1.14	1.04	0.95	0.82	0.12	2.82	2.78	2.71	2.64	2.52
0.56	1.22	1.15	1.06	0.97	0.83	0.11	2.95	2.91	2.84	2.77	2.65
0.55	1.23	1.17	1.08	0.97	0.85	0.11	3.10	3.06	2.99	2.92	2.79
0.00	1,20	1.17	1.00	0.70	0.03	0.10	3.10	3.00	4,77	2172	4177

©FH Kärnten 2008

Beispiel: Knickstab (Eulerfall 2)

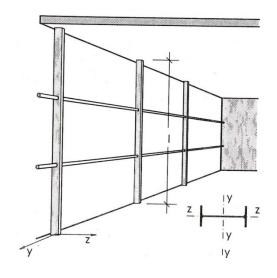
Profil: HEB 360, S355

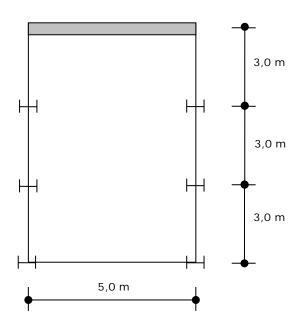
Länge I = 4,50 m

Beansp.: N_d = 3900 kN

Abb. 9.5: Knickstab (Eulerfall 2)

Gesucht:


- 1. Tragsicherheitsnachweis
- 2. Stabilitätsnachweis auf Knicken



<u>Übung !!!</u>

Lösung: <u>Beispiel-euler-02</u>

Beispiel: Fassadenstütze

Gesucht:

- 1. Berechnen Sie die maximale Normalkraft N_d in der maßgebenden Fassadenstütze. Lastfallkombination:
 - Eigengewicht (Stahlbetondecke 25,0 cm) und Schneelast $(q_k = 2,5 \text{ kN/m}^2)$.
- 2. Dimensionieren Sie die Stützen als I-Träger (Knicknachweis) für das in der Skizze angegebene System. (S 355, $f_{y,k} = 355 \text{ N/mm}^2$)

Lösung: Fassadenstütze

10 Arten von Tragwerke

Weiterführung des Kapitels 4 aus TWL – Grundlagen – Begleitskript

Abbildung 10.1: Tragwerke nach ihrer mechanischen Beanspruchung (siehe u.a.3)

 3 Tragsysteme Structure Systems, Heino Engel, Verlag Gerd Hatje, 2. Auflage, 1999, nur für Lehrzwecke !

10.1 Unterspannter Träger

Der unterspannte Träger stellt ein hybrides formaktives Tragwerk aus Obergurtträger und Abspannungssystem dar. Der Obergurtträger wird als Biegeträger beansprucht. Die Abspannung als vektoraktives System bestehend aus Druckstab (Spreize) und Zugband wird durch Normalkräfte beansprucht.

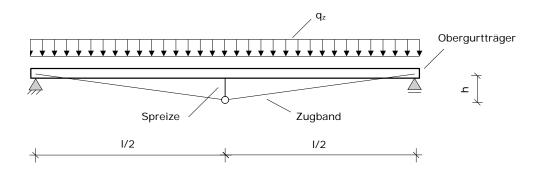


Abbildung 10.2: Tragelemente des unterspannten Trägers⁴

Der Obergurtträger ist durch eine oder mehrere Spreizen zwischen den Endauflagern gestützt. Es einsteht eine Art Zweifeld- oder Mehrfeldträger mit elastischen Zwischenlagern ("Feder"). Die in den Spreizen wirkenden Druckkräfte werden über das Zugband in die Auflagerpunkte geleitet. Während die horizontalen Komponenten des Zugbandes als Druckkraft im Obergurtträger "kurzgeschlossen" werden, also im System bleiben, werden die vertikalen Komponenten als Vertikallast in die Auflager abgegeben.

. .

⁴ Siehe u.a.: "Tragwerksentwurf für Architekten und Bauingenieure", Stöffler, Samberg, nur für Lehrzwecke!

Eine sehr hohe Dehnsteifigkeit (Federsteifigkeit) im Zugband führt zu einem Stützmoment über der Spreize, vergleichbar mit einen festen Mittellager eines Zweifeldträgers. Eine sehr geringe Federsteifigkeit (kleine Dehnsteifigkeit des Zugbandes) bewirkt, dass sich ein Tragverhalten wie bei einem Einfeldträger einstellt. Es entsteht ein großes Feldmoment. Neben der Dehnsteifigkeit hat die Vorspannung des Zugbandes ebenfalls einen Einfluss auf den Momentenverlauf. Die nachfolgende Abbildung zeigt verschiedene Momentenverläufe innerhalb der Grenzwerte (EA = ∞ , EA=0, EA:= Dehnsteifigkeit).

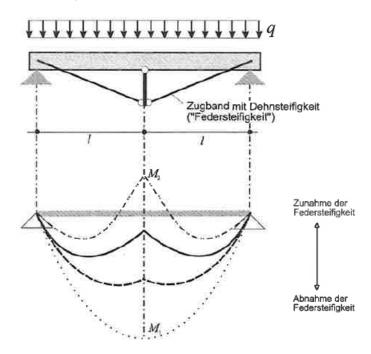


Abbildung 10.3: Momentenverlauf im Obergurtträger in Abhängigkeit der elastischen Lagerung⁵

_

⁵ Auszug aus: "Tragwerksentwurf für Architekten und Bauingenieure", Stöffler, Samberg, nur für Lehrzwecke!

Beispiel:

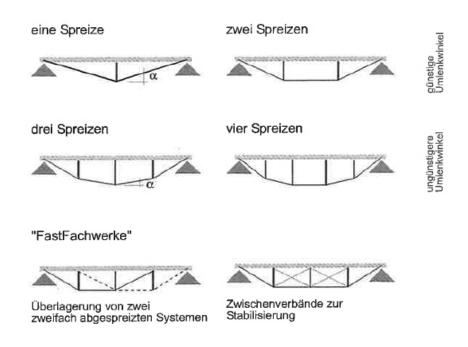
Abbildung 10.4: Unterspannter Träger (<u>Unterspannter Träger</u>)

Gesucht:

- 1. Berechnen Sie die Auflagerkräfte A,B,C des Zweifeldträgers
- 2. Berechnen Sie die max. Normalkräfte in der Spreize (S) und im Zugband (Z) des unterspannten Trägers; Annahme EA== ∞

10.1.1 Formen von unterspannten Trägern

Nachfolgend sind einige Formen und Anordnungen von unterspannten Träger dargestellt. Die Variationsmöglichkeiten bestehen in der Anzahl der Spreizen und deren Anordnung, der Form des Obergurtträgers und der Anordnung der Träger im Grundriss.



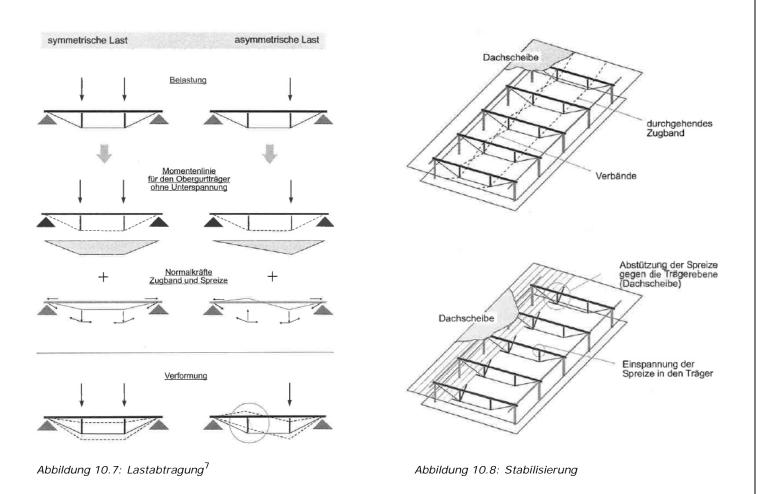

Abbildung 10.5: Mögliche Spreizenanordnung⁶

Abbildung 10.6: Untersp. Brücke

⁶ Auszug aus: "Tragwerksentwurf für Architekten und Bauingenieure", Stöffler, Samberg, nur für Lehrzwecke!

10.1.2 Lastabtragung - Stabilisierung

Beispiel: <u>Köln</u>

 $^{^{7}}$ Auszug aus: "Tragwerksentwurf für Architekten und Bauingenieure", Stöffler, Samberg, nur für Lehrzwecke !

11 Bogentragwerke

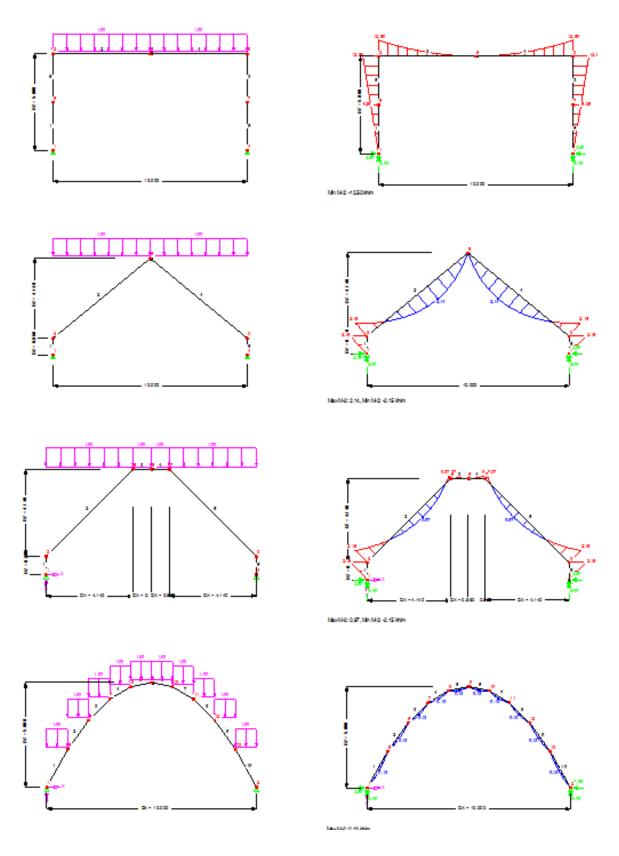
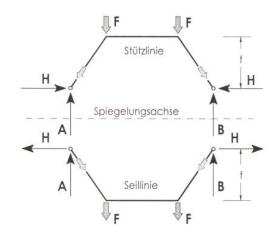
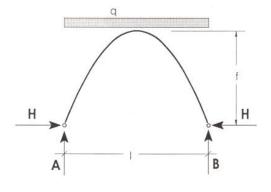




Abbildung 11.1: Vom "Schnittaktiven" zum "Formaktiven" Tragwerk

11.1 Bögen - Grundlagen

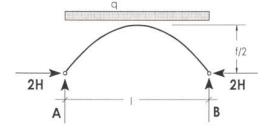


Abbildung 11.2: Tragverhalten- Seillinie und Stützlinie⁸

Abbildung 11.3: Bogenbrücke - Craigellachie Bridge <u>Prinzip der Umkehrung</u>

⁸ Auszug aus "Tragwerkslehre", G.W. Leicher, Werner Verlag, nur für Lehrzwecke!

11.2 Bogenform - Stützlinie

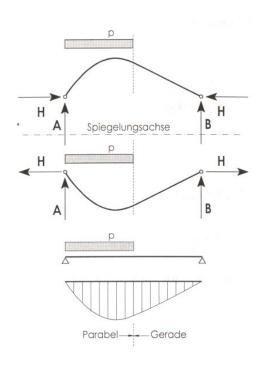


Abbildung 11.4: Tragverhalten einseitige Last⁹

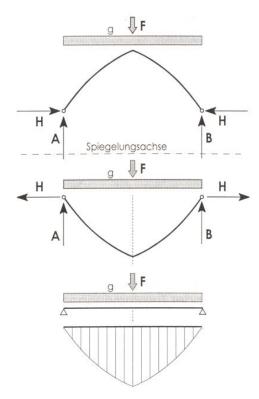
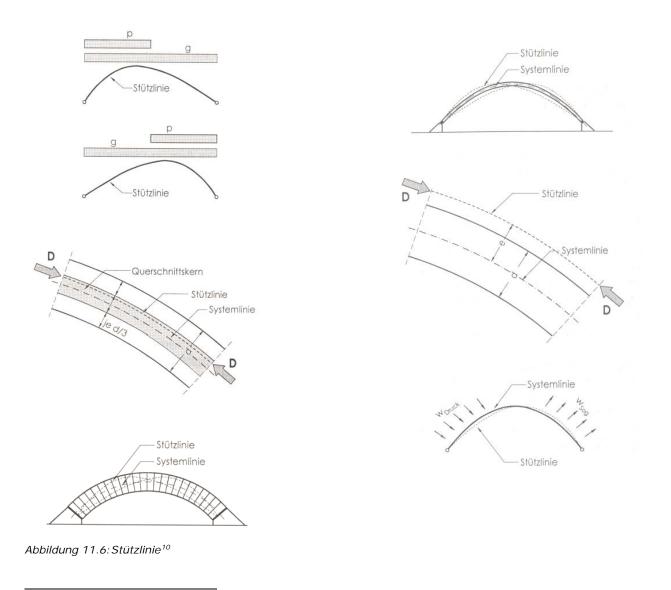



Abbildung 11.5: Gotischer Spitzbogen

⁹ Auszug aus "Tragwerkslehre", G.W. Leicher, Werner Verlag, nur für Lehrzwecke!

¹⁰ Auszug aus "Tragwerkslehre", G.W. Leicher, Werner Verlag, nur für Lehrzwecke!

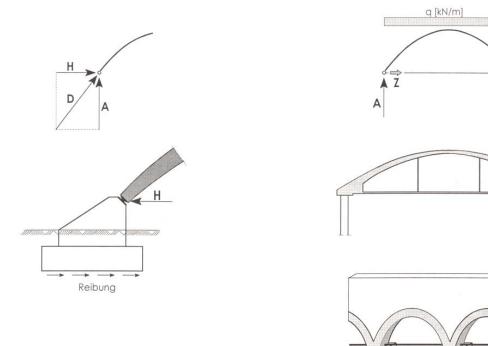
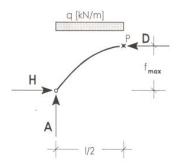



Abbildung 11.7: Bögen "kurzgeschlossen" 11

Auszug aus "Tragwerkslehre", G.W. Leicher, Werner Verlag, nur für Lehrzwecke!

11.3 Auflager und Bogenkräfte

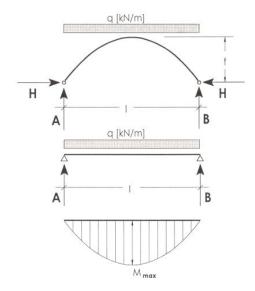


Abbildung 11.8:Tragverhalten- Ersatzsystem 12

¹² Auszug aus "Tragwerkslehre", G.W. Leicher, Werner Verlag, nur für Lehrzwecke!

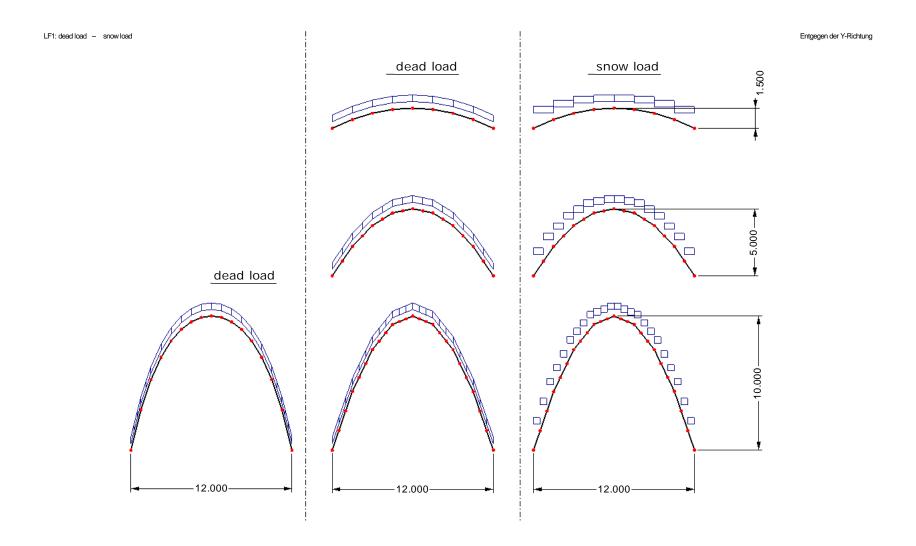


Abbildung 11.9: System: Kettenlinie (exakt), Kettenlinie (exakt), Parabel (Näherung) - RSTAB

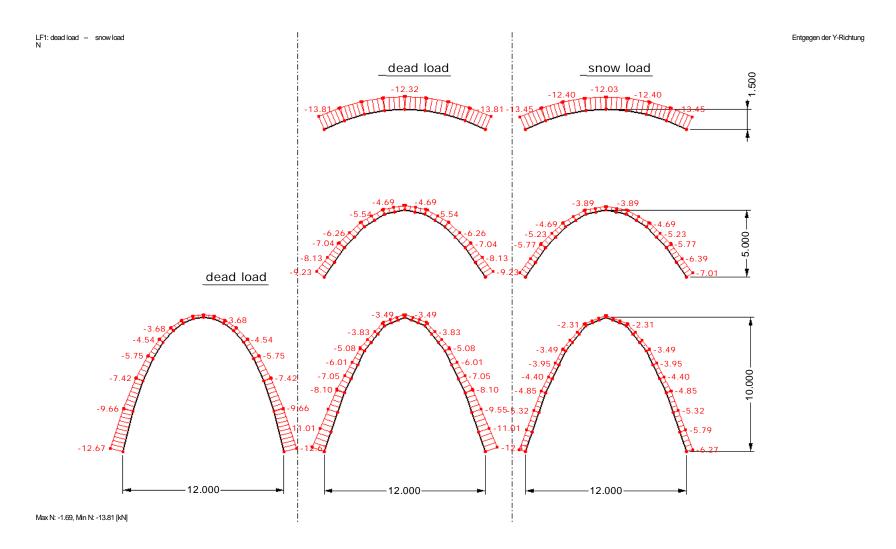
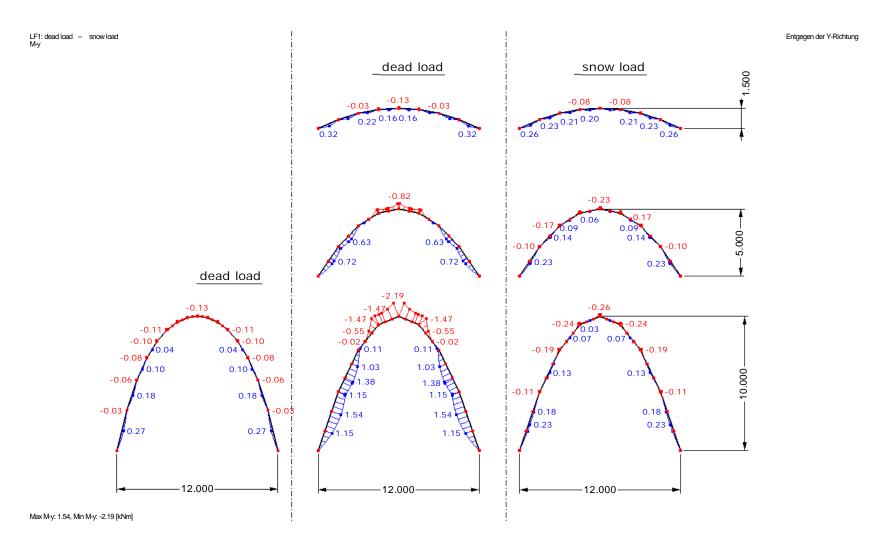
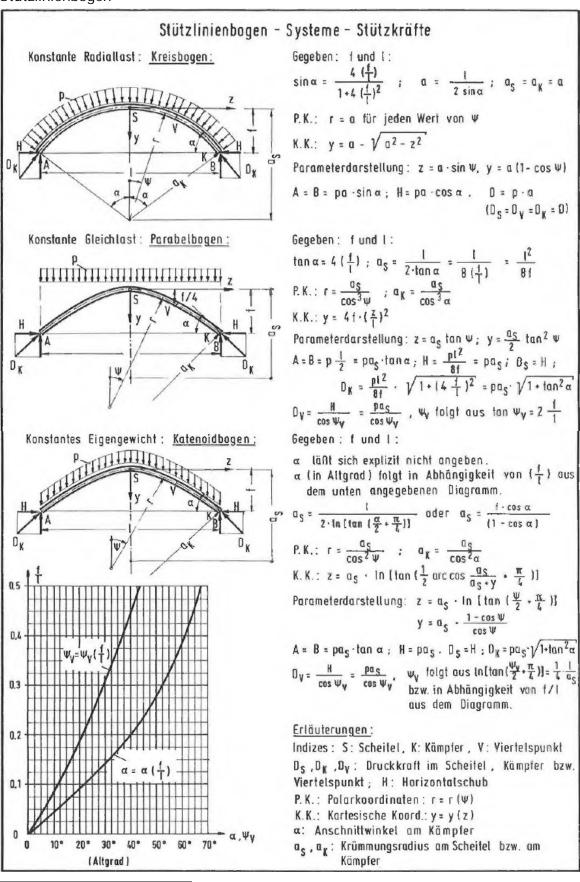
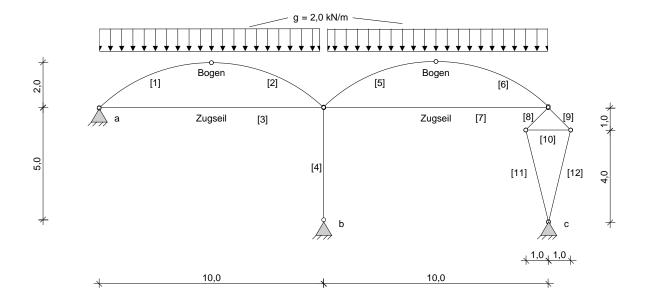


Abbildung 11.10: System: Kettenlinie (exakt), Kettenlinie (exakt), Parabel (Näherung) – Normalkraft in kN


Abbildung 11.11: System: Kettenlinie (exakt), Kettenlinie (exakt), Parabel (Näherung) – Moment in kNm

Stützlinienbogen 13

¹³ Auszug aus Statik und Stabilität, Pertersen, Vieweg Verlag Verlag, nur für Lehrzwecke!

Beispiel: Bogen Tragwerk

- 1. Berechnen Sie **alle** Auflagerreaktionen.
- 2. Berechnen Sie die **max.** Normalkraft in allen Bögen, Stäbe und Seilen und tragen sie die Werte in die Skizze (siehe Seite 6) ein.

Annahme: Als primäre Kräfte wirken **nur Normalkräfte** im Tragwerk

<u>RSTAB</u>

<u>Übung !!!</u>

Weiteres Beispiel:
Vorgespannter Korbbogenbinder

<u>Dach: HB – Berlin</u>

12 Seiltragwerke - Prinzip der Vorspannung

Prinzip der Vorspannung: a | Ein schlaffes Seil kann nicht stützen.

- b | Ein Seil kann zum Aufhängen einer Last verwendet werden.
- c | Das an Decke und Boden befestigte, noch unbelastete Seil wird mit einem Spannschloss auf die Kraft V vorgespannt.

d | Die mittig an das vorgespannte Seil angehängte Last hängt sich je zur Hälfte an die Decke und stützt sich über das untere Seil auf den Boden ab. e | Wenn die Last auf das Doppelte gesteigert wird, hat der Druck die Vorspannung im unteren Seil aufgezehrt und es wird schlaff. Ab da hängt die Last wieder allein im oberen Seil.

Principle of prestressing: a | A slack rope cannot provide support

b | A cable can be used to suspend a load

- c | The cable, fastened to ceiling and floor and not yet under load is prestressed up to force V using a turnbuckle
- d | The load, suspended from the middle of the prestressed cable, is suspended half from the ceiling and the other half supported from the floor.
- e | If the load is doubled, the compression consumes the prestressing in the lower cable and it becomes slack. From then on the load is solely suspended from the upper cable.

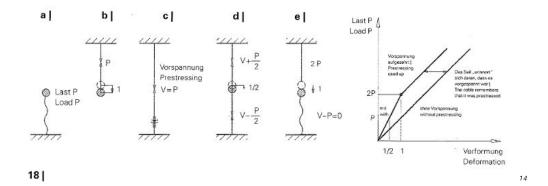


Abbildung 12.1:

Messeturm München

¹⁴ Auszug aus, Leicht Weit, Light Structures, Schlaichund Bergermann, DAM Verlag, nur für Lehrzwecke!

ENGLISH	DEUTSCH
Axial force	Normalkraft
Beam	Balken
Bearer	Unterzug
Bending resistant	Biegesteif
Bracing	Aussteifung, Verband
Buckling	Knicken
Cantilever	Auskragen
Cantilevered beam	Biegesteifer Balken
Coating/screeding/upstand beam	Überzug
Column/bearing/support stand	Stütze
Compression	Druck
Core	Kern
Cross bracing Dead load	Kreuzverband Eigenlast
Deflection	Biegung, Krümmung
Deformation	Verformung
Dividing plate	Teilscheibe
Durability	Dauerhaftigkeit
Façade/cladding/veneer	Fassade
Fixed support	Einspannuntes Auflager
Foundation	Fundament, Gründung
Frame	Rahmen
Frame construction	Skelettbau
Girder	Balken, Träger
Hall truss	Hallentragwerk
I-beam/I-section	I-Träger
Inclination	Neigung
Joint	Gelenk, Anschlussstück, Fuge, Stoß
Leight-weight wall	Leichtbauwand
Load	Belastung, Kraft
Load transmission	Lastübertragung
Load-bearing capacity	Tragfähigkeit
Load-bearing walls/supporting wall	Tragende Wand
Meshed reinforcement Non-load-bearing walls	Bewehrungsmatte Nichttragende Wand
Pile caps	Pilzstützen
Pin support	Festes Auflager
Plastic buckling	Plastisches Knicken
Preliminary design study/engineering	Entwurfsstatik
Profiled sheeting	Trapezblech
Punching	Durchstanzen
Reinforced concrete	Stahlbeton
Reinforcement	Armierung, Bewehrung, Aussteifung
Resisting torque	Widerstandsmoment
roller support/swinging support	Bewegliches Auflager
Roof beam/stringer/purlin	Pfette
serviceability	Gebrauchstauglichkeit
Shear wall	Wandscheibe
Shearing force	Querkraft
Simple-support	Festes & bewegliches Auflager
Slab	Decke, Platte
Solid pulley	Vollscheibe
Steel senstruction	Stahl
Steel construction Stiff/rigid/inflexible	Stahlbau steif
Support/bearing	Auflager
Suspended	Aufgehängt
Tension	Zuq
Threshold	Schwellenwert, Grenzbereich
Timber-frame construction	Holzbau
Torque	Moment, Drehmoment
Truss/bearing structure	Fachwerk, Tragwerk
Uniformly distributed load	Gleichlast
U-profile/U-section	U-Profil
Waler/bolt	Riegel
	· ×