
\_\_\_\_\_

## Aufgabe 1: Drehkran

Der in der Draufsicht dargestellte Drehkran dreht sich mit  $\omega_0=const.$ 

Gleichzeitig fährt die Laufkatze mit  $v_0 = const.$ 



Gegeben:  $r(t_0=0)=r_0$ ,  $\phi(t_0=0)=0$ ,  $\omega_0$ ,  $v_0$ 

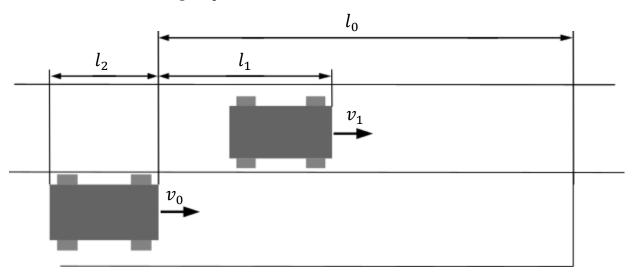
Quelle: http://wandinger.userweb.mwn.de, Zugriff: 13.05.2017

a) Ermitteln Sie die Gleichungen r(t) und  $\phi(t)$ .



b) Ermitteln Sie  $v_r(t)$  und  $v_\phi(t)$  der Laufkatze.

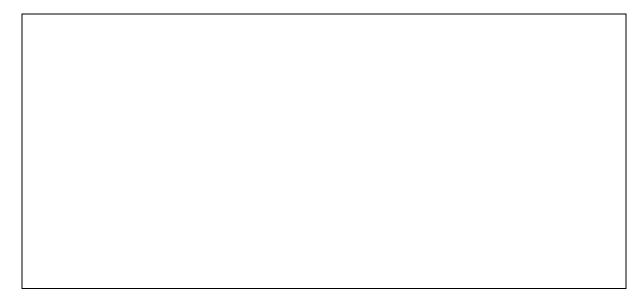



c) Ermitteln Sie  $a_r(t)$  und  $a_\phi(t)$  der Laufkatze.



\_\_\_\_\_\_

## Aufgabe 2: Autobahn

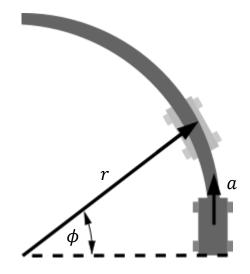

Sie fahren mit einem PKW mit einer Geschwindigkeit  $v_0$  auf die Beschleunigungsspur einer Autobahn auf. Auf der rechten Spur fährt ein PKW mit konstanter Geschwindigkeit  $v_1$ vor Ihnen und. Die Beschleunigungsspur hat eine verbleibende Länge  $\ l_0$ .



Gegeben: 
$$l_0=l$$
,  $l_1=\frac{1}{4}l$ ,  $l_2=\frac{1}{10}l$ ,  $v_0=v$ ,  $v_1=\frac{3}{4}v$ 

Quelle: © Oliver Schenk

a) Ihr PKW kann mit maximal  $a_0$  beschleunigen. Welche Geschwindigkeit können Sie dann auf der Beschleunigungsspur (nach dem Zurücklegen von  $l_0$ ) erreichen?




| b) Wie groß muss die Beschleunigung $a_1={\rm const.}$ Ihres Wagens mindestens sein, um mit einer Wagenlänge Abstand gerade noch vor dem zweiten PKW einscheren zu können (nach dem Zurücklegen von $l_0$ )? |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                                              |
|                                                                                                                                                                                                              |
|                                                                                                                                                                                                              |
|                                                                                                                                                                                                              |
| c) Wie lange dauert das Überholmanöver höchstens?                                                                                                                                                            |
|                                                                                                                                                                                                              |
|                                                                                                                                                                                                              |
| d) Sie fahren mit der Geschwindigkeit aus a) weiter. Vor Ihnen geschieht im Abstand $\boldsymbol{l}$ ein Unfall. Berechnen Sie die Beschleunigung, mit der Sie abbremsen müssen.                             |
|                                                                                                                                                                                                              |
|                                                                                                                                                                                                              |
|                                                                                                                                                                                                              |

\_\_\_\_\_

## Aufgabe 3: Beschleunigung durch eine Kurve

Ein Auto steht zunächst und fährt dann durch eine Kurve mit dem Radius r. Dabei beschleunigt es mit einer konstanten Beschleunigung a.



Gegeben: r, a

| Quelle: © Oliver Schenk                                                                   |
|-------------------------------------------------------------------------------------------|
| a) Berechnen Sie die Komponenten $v_{x}$ und $v_{y}$ für einen beliebigen Winkel $\phi$ . |
|                                                                                           |
|                                                                                           |
|                                                                                           |
|                                                                                           |
|                                                                                           |
|                                                                                           |
|                                                                                           |
|                                                                                           |
|                                                                                           |
| b) Drücken Sie Ihre Ergebnisse aus a) nun in Abhängigkeit von der Zeit aus.               |
|                                                                                           |
|                                                                                           |
|                                                                                           |
|                                                                                           |
|                                                                                           |
|                                                                                           |
|                                                                                           |
|                                                                                           |

c) Welche Geschwindigkeit hat das Auto beim Verlassen der Kurve? d) Bestimmen Sie die Beschleunigungskomponenten  $\boldsymbol{a}_n$  und  $\boldsymbol{a}_t$  in Abhängigkeit vom zurückgelegten Weg s.

Lösungen:

$$\begin{split} & \omega_{o}t, r_{o}+v_{0}t, -\omega_{0}^{2}(r_{0}+v_{0}t), 2\omega_{0}v_{0}, \ \omega_{0}(r_{0}+v_{0}t), v_{0} \\ & \sqrt{v^{2}+4la_{o}}, \frac{2l}{v}, 0, \frac{v^{2}}{2l}+2a_{0} \\ & -atsin(\phi), atcos(\phi), -atsin\left(\frac{at^{2}}{2r}\right), \sqrt{\pi ra}, a, \frac{2as}{r}, atcos(\frac{at^{2}}{2r}) \end{split}$$