# **ENERGIEERHALTUNG / ENERGIESATZ (BERNOULLI-GLEICHUNG)**

inkompressibel, stationär, mit Verlusten und mit Zu- oder Abfuhr mechanischer Arbeit

### Strömung von ① nach ②:

| Energieform: | $\frac{1}{2}w_2^2 + \frac{p_2}{\rho} + gz_2 = \frac{1}{2}w_1^2 + \frac{p_1}{\rho} + gz_1 - \varphi_{12} \pm w_{t12}$          | [m²/s²] |
|--------------|-------------------------------------------------------------------------------------------------------------------------------|---------|
| Druckform:   | $\frac{\rho}{2}w_2^2 + p_2 + \rho g z_2 = \frac{\rho}{2}w_1^2 + p_1 + \rho g z_1 - \Delta p_g \pm \rho w_{t12}$               | [N/m²]  |
| Höhenform:   | $\frac{{w_2}^2}{2g} + \frac{p_2}{\rho g} + z_2 = \frac{{w_1}^2}{2g} + \frac{p_1}{\rho g} + z_1 - h_v \pm \frac{1}{g} w_{t12}$ | [m]     |

### **SPEZIFISCHE DISSIPATION**

$$\varphi_{12} = \frac{P_R}{m} = \zeta \cdot \frac{1}{2} w^2 \qquad (P_R: \text{Reibungsleistung})$$

$$Rohrreibungsverluste \qquad \zeta = \lambda \frac{l}{d_h}$$

$$mit: \qquad d_h: hydraulischer Durchmesser (d_h = 4 \frac{A}{U})$$

$$\lambda: Rohrreibungszahl$$

$$l: Rohrlänge$$

$$\ddot{C} = \text{Widerstandszahl des Rohrleitungselements}$$

$$z.B. Einlauf, Krümmer, Umlenkung...$$

#### GESAMTE SPEZIFISCHE DISSIPATION EINES SYSTEM

| $\varphi_{12} = \sum \zeta_i \cdot \frac{1}{2} w_i^2$ | > Summe der spez. Dissipation aller Teilsysteme |
|-------------------------------------------------------|-------------------------------------------------|
|-------------------------------------------------------|-------------------------------------------------|

### SPEZIFISCHE TECHNISCHE ARBEIT

$$\pm w_{t12} = \frac{P_M}{\dot{m}}$$

mechanische Leistung  $P_M = \Delta p_{P,T} \cdot Q$ 

mit:  $\Delta p_P$ : Druckanstieg in der Pumpe

 $\Delta p_T$ : Druckabfall in der Turbine

**Pumpe**  $\Rightarrow$  Energiezufuhr  $\Rightarrow$  +  $w_{t12}$  (**positiv**)

**Turbine**  $\Rightarrow$  Energieentnahme  $\Rightarrow$  -  $w_{t12}$  (**negativ**)

#### GESAMTWIRKUNGSGRAD VON PUMPEN UND TURBINEN

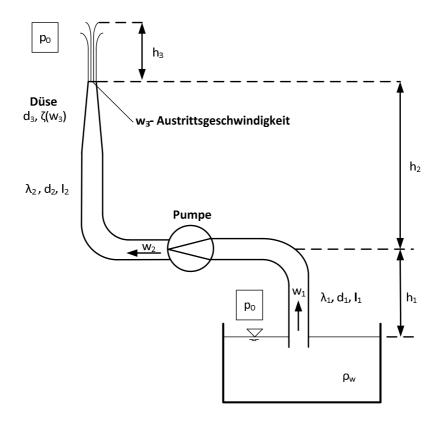
Pumpe:  $P_M = \eta_P \cdot P_{el}$ 

 $\eta_P = \frac{P_M}{P_{el}}$ 

Turbine:  $P_M = \frac{1}{\eta_P} P_{el}$ 

 $\eta_T = \frac{P_{el}}{P_M}$ 

### MASSENERHALTUNG (KONTINUITÄTSGLEICHUNG)


**kompressibel:**  $\dot{m} = \rho \cdot Q = \rho \cdot w \cdot A = const.$ 

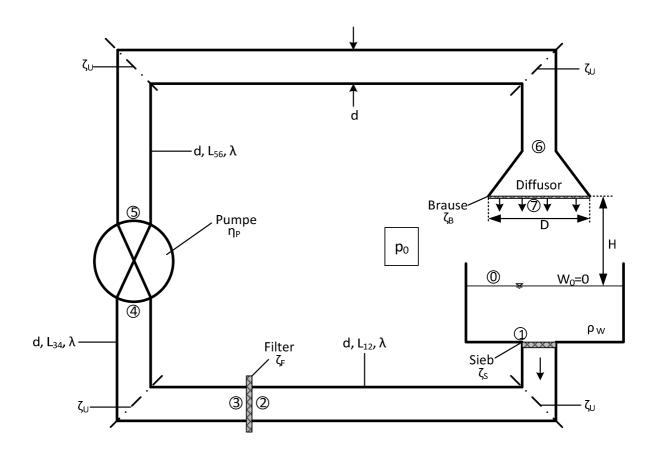
inkompressibel:  $Q = w \cdot A = const$ 

#### WASSERSPIEL

(inkompressibel, stationär, mit Reibung und mechanischer Arbeit)

In einem Park soll ein Wasserspiel in Form einer Fontaine installiert werden. Zur Wasserversorgung dient ein Vorratsbecken, in welches das Wasser durch ein Kreislaufsystem zurückgeführt wird. Die hierbei zu überwindenden Strecken und Höhen sind in der Skizze dargestellt. Die verwendete Pumpe besitzt einen Wirkungsgrad von  $\eta=0.85$ . Der Austrittsverlust und die Verluste in der Düse sind mit der Widerstandszahl  $\zeta(w_3)=0.01$  zu berücksichtigen.




- a) Wie groß ist die erforderliche elektrische Leistung  $P_{el}$  der Pumpe, wenn die Austrittsgeschwindigkeit aus der Düse  $w_3 = 10$  m/s betragen soll (Freistrahl)?
- b) Wie hoch ist die maximal erreichbare Höhe h<sub>3</sub> bei dieser Pumpenleistung?

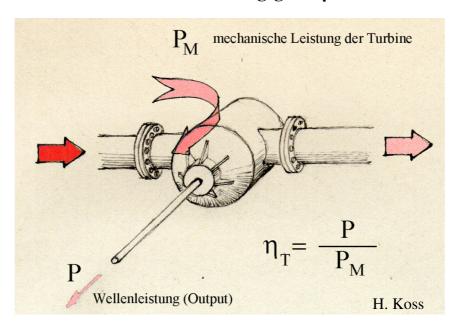
| Gegeben: | $h_1 = 5.0 \text{ m}$  | $d_1 = 50 \text{ mm}$        | $l_1 = 15 \text{ m}$ | $\lambda_1 = 0.02$      |
|----------|------------------------|------------------------------|----------------------|-------------------------|
|          | $h_2 = 7.0 \text{ m}$  | $d_2 = 50 \text{ mm}$        | $l_2 = 6 \text{ m}$  | $\lambda_2 = 0.02$      |
|          |                        | $d_3 = 36 \text{ mm}$        |                      |                         |
|          | $\eta = 0.85$          | $\rho = 1000 \text{ kg/m}^3$ | g = 9.81             | $p_0 = 10^5 \text{ Pa}$ |
|          | $w_3 = 10 \text{ m/s}$ |                              |                      |                         |

### **FISCHZUCHTBECKEN**

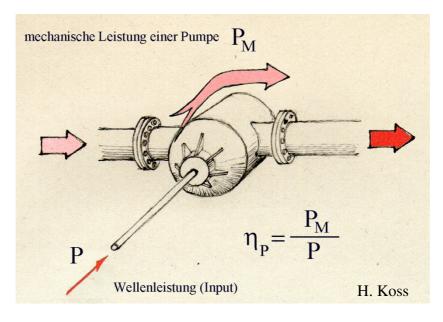
(inkompressibel, stationär, mit Reibung und mechanischer Arbeit)

Wasser wird aus einem Fischzuchtbecken von einer Pumpe stationär und verlustbehaftet durch eine Rohrleitung von Pos. ① zur Pos. ② gefördert. Ein eingebauter Filter an Pos.②-③ reinigt das Wasser, und am Auslass (Pos.⑦) wird in einer Brause dem austretenden *Freistrahl* Sauerstoff beigemischt, bevor das Wasser zurück in das Becken rieselt.

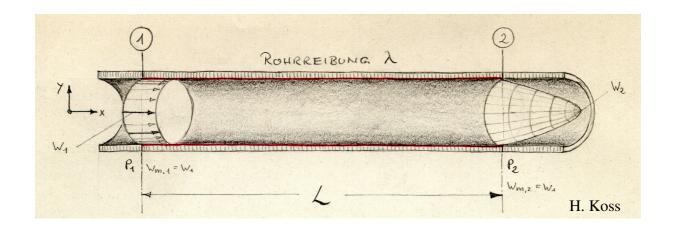


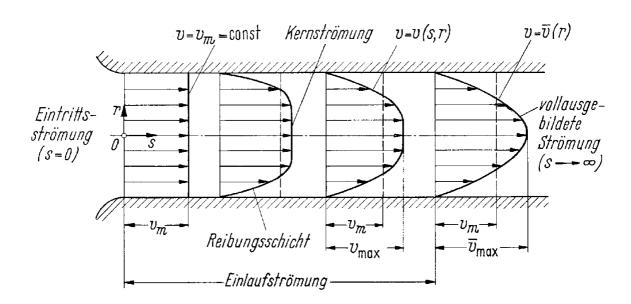

a) Welchen Betrag darf die Widerstandszahl  $\zeta_F(w_2)$  des Filters nicht überschreiten, wenn der Pumpe eine maximale elektrische Leistung von  $P_{el,max} = 10.000$  Watt zugeführt wird und die Re-Zahl im Rohrabschnitt ①-② den Wert Re =  $5\cdot10^5$  nicht unterschreiten soll.

| Gegeben: | H = 1.0  m                               | D = 0.5  m                   | d = 0.25  m                  | $\lambda = 0.017 = const.$                           |
|----------|------------------------------------------|------------------------------|------------------------------|------------------------------------------------------|
|          | $L_{12} = 2.0 \text{ m}$                 | $L_{34} = 2.5 \text{ m}$     | $L_{56} = 5.5 \text{ m}$     |                                                      |
|          | $\zeta_{S}\left(w_{1}\right)=5$          | $\zeta_{\rm U} (w_1) = 0.15$ | $\zeta_{\rm U} (w_3) = 0.15$ | $\zeta_{\mathrm{U}}\left(\mathbf{w}_{5}\right)=0,15$ |
|          | $\zeta_{\rm B}\left({\rm w}_7\right)=10$ |                              | $\eta_{\rm P} = 0.85$        | $P_{el,max} = 10 \text{ kW}$                         |

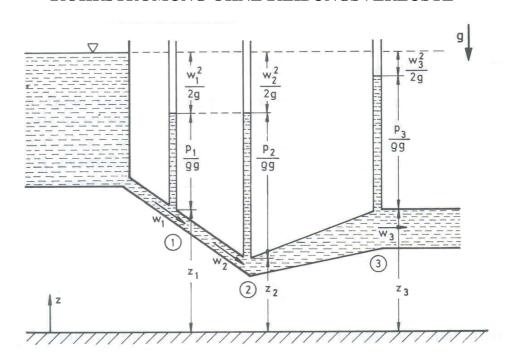

.

## MECHANISCHE LEISTUNG $P_{M}$


## $Turbinen wirkungsgrad\ \eta_T$




# Pumpenwirkungsgrad np




### ROHRSTRÖMUNG UNTER REIBUNGSEINFLUSS





### ROHRSTRÖMUNG OHNE REIBUNGSVERLUSTE



# ROHRSTRÖMUNG MIT REIBUNGSVERLUSTEN

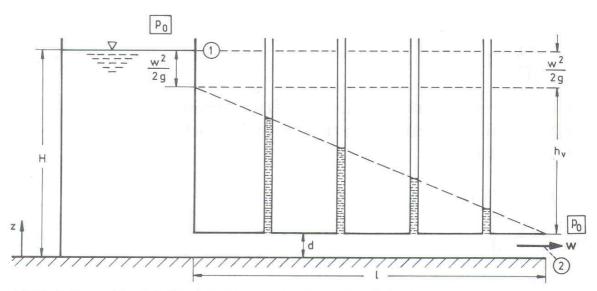



Abb. 41: Reibungsbehaftete Strömung in einem Ausflußrohr

<u>Grafiken entnommen:</u> Einführung in die Strömungsmechanik, Gersten, K., 4. Auflage, 1986, Vieweg-Verlag