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Chapter 1

Newtonian mechanics

“The initial state of a mechanical sys-
tem (the totality of positions and ve-
locities of its points at some moment
of time) uniquely determines all of its
motion.
It is hard to doubt this fact, since we
learn it very early. One can imagine
a world in which to determine the fu-
ture of a system one must also know
the acceleration at the initial mo-
ment, but experience shows us that
our world is not like this.”

Vladimir Arnold “Mathematical
Methods of Classical Mechanics"

Newtonian mechanics studies the motion of a system of point masses in three-dimensional euclidean
space. Newton’s equations allow one to solve completely a series of important problems in mechanics,
including the problem of motion in a central force field.

1.1 Conservative forces

Let us assume that a point particle moves under a force ~F = ~F (~r(t)) that depends on the radius-
vector ~r(t) but does not depend on the velocity ~̇r.

Definition 1. Work which is done by a force to move particle along the trajectory γ from the
position ~r1 to ~r2 is defined as

W12(γ) =

∫ ~r2

~r1

~F · d~r =

∫ t2

t1

~F (~r(t)) · d~r
dt
dt .

Definition 2. A force is called conservative if W12 does not depend on the path connecting the
initial and final points.

We have several characterisations of a conservative force.

9



• If a force is conservative then the work along any closed path vanishes: W = 0. Indeed,
W12(γ1) = W12(γ2) = −W21(γ2), so that the work over the closed pathW12(γ1)+W21(γ2) = 0.
This can be written as

∮
~F · d~r = 0 .

• A force is conservative if and only if there exists a scalar function U(~r) on R3 such that

~F = −~∇U.

The function U is called potential. The minus sign in the above formula is chosen in such a
way that the force is directed towards decreasing of the potential.

Let us prove an equivalence of these two definitions. Suppose first that U exists and ~F = −~∇U . Let
us show that work does not depend on a path. We have

W12 =

∫ t2

t1

~F (~r(t)) · d~r
dt
dt = −

∫ t2

t1

~∇U · d~r
dt
dt = −

∫ t2

t1

dU

dt
dt = U(~r(t1))− U(~r(t2)) .

Thus, W12 does not depend on a path and, therefore, ~F is conservative. Oppositely, assume that
W12 does not depend on a path. Then, the following function is well-defined

U(~r(t)) = −
∫ ~r(t)

~r1

~F (~r′) · d~r′ = −
∫ t

t1

~F (~r′) · d~r
′

dt
dt .

From here we get

dU

dt
= ~∇U · d~r

dt
= −~F (~r) · d~r

dt
→ ~F = −~∇U .

Some remarks are in order. A potential is defined up to an additive constant c, as ~∇(U + c) = ~∇U .
Finally, the work from moving at position ~r1 to a position ~r2 is given by a difference of potentials
and does not depend on the form of a trajectory

W12 = −
∫ ~r2

~r1

dU = U(~r1)− U(~r2) , dU = ~∇Ud~r .

There is a third definition of a conservative fourse.

• Force is conservative if and only if the curl of ~F vanishes

~∇× ~F = 0 .

The proof goes as follows. If ~F = −~∇U , then ~∇ × ~F = −~∇ × ~∇U = 0 by the known formula of
the mathematical analysis. Oppositely, taking any closed pass γ in a simply connected region where
~∇× ~F = 0, we compute circulation of ~F over this path by using the Stokes theorem

∮

γ

~F · d~r =

∫

S

~∇× ~F dS = 0 ,

where S is any smooth, orientable surface whose boundary is γ. Thus, circulation vanishes for any
closed path, i.e. ~F is conservative.

Examples of conservative forces
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1. Homogeneous force ~F = const. Then ~F = −~∇U , U = −~F ·~r . For instance, the homogeneous
gravitational field of the Earth ~F = −mg~ez, U = mgz.

2. Harmonic oscillator
~F = −k~r , U =

k

2
~r · ~r .

3. Central field ~F = f(|~r|) · ~r|~r| , ~F ||~r is always conservative. For instance, Newton’s gravitational
force

~F = γ
m1m2

r3
~r , U = −γm1m2

r
.

1.2 Kinetic and potential energy. Conservation of energy

Consider Newton’s equations

m~̈r = ~F (~r) ,

where we assume that ~F is a conservative force. We multiply this equation with ~̇r and get

m~̈r · ~̇r = ~F (~r) · ~̇r .

The left hand side can obviously be represented in the form

m

2

d

dt
(~̇r · ~̇r) = ~F · ~̇r . (I.1.1)

Definition 3. The quantity

T =
m

2
(~̇r · ~̇r) =

m

2
~̇r2 =

m

2
~v2

is called kinetic energy of a particle.

We then integrate (I.1.1) ∫ t2

t1

dt
d

dt
T =

∫ t2

t1

~F · ~̇rdt ,

so that
T (t2)− T (t1) = W

Since ~F = −~∇U , we have

T (t2)− T (t1) = −
∫ t2

t1

~∇U · ~̇rdt = −
∫ t2

t1

dU

dt
dt = U(t1)− U(t2) .

From here we deduce that
T (t1) + U(t1) = T (t2) + U(t2) .

Thus, the quantity E = T + U does not depend on time. It is called the total energy of the system.
For a conservative force the total energy of a system is conserved along particle’s trajectory. This
can be checked directly by computing the time derivative of the total energy

dE

dt
=
dT

dt
+
dU

dt
=
m

2

d

dt
~̇r2 + ~∇U · ṙ = m~̈r · ṙ − ~F · ṙ = (m~̈r − ~F )︸ ︷︷ ︸

Newton

·ṙ = 0 .
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E = E1

E = E2

U

x
xA xB xC

x0

Figure 1.1: Motion in a typical potential.

1.3 One-dimensional systems

In most cases (for example, in the three-body problem) we can neither solve the system of differential
equations nor completely describe the behavior of the solutions. Here we consider a few simple but
important problems for which Newton’s equations can be solved.

One example is provided by one-dimensional systems. For one-dimensional systems Newton’s
equation is

mẍ = F

and F = F (x) is always conservative as there is always exists such U that F = −∂U∂x . Energy

E = T + U =
m

2
ẋ2 + U ,

dE

dt
= 0 .

Thus, fixing the value of E, we get

ẋ =
dx

dt
= ±

√
2

m
(E − U) .

We proceed by separating the differentials

dx√
2
m (E − U(x))

= dt →
∫ x2(t2)

x1(t1)

dx′√
2
m (E − U(x′))

=

∫ t2

t1

dt = t2 − t1 .

Consider a motion in a given potential, see Fig. 1.1. There should be

T ≥ 0 =⇒ E ≥ U =⇒ E > U(x0) .

For E = E1 the particle can only be in regions

xA ≤ x ≤ xB (1)

xC ≤ x (2)
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(1) Periodic motion around equilibrium point x0. Here the turning points are xA and xB .
The position of equilibrium coinsides with extrema of the potential, i.e.

dU

dx
= 0 ,

d2U

dx2
=

{
> 0 stable equilibrium
< 0 unstable equilibrium

Then U is minimal then T is maximal and at x = x0 the particle has its highest velocity. On the
other hand,

E1 = U(xA) = U(xB) =⇒ T = 0 ẋ(x = xA,B) = 0 .

The period of motion is

τ = 2

∫ xB

xA

dx√
2
m (E − U(x))

.

Consider small oscillations around equilibrium. Expand the potential in Teylor series

U(x) = U(x0)︸ ︷︷ ︸
const

+
dU

dx

∣∣∣
x=x0︸ ︷︷ ︸

=0

(x− x0) +
1

2

d2U

dx2

∣∣∣
x=x0

(x− x0)2 + o
(

(x− x0)2
)
.

We can always choose U(x0) to be zero as U is defined up to an additive constant. The second term
is zero because the potential is expanded around minimum. Next we set

1

2

d2U

dx2

∣∣∣
x=x0

(x− x0)2 =
1

2
mω2(x− x0)2

with

ω2 =
1

m

d2U

dx2

∣∣∣
x=x0

being the frequency of oscillations.
:::::
Thus,

:::
the

::::::::::
frequency

::
of

:::::
small

:::::::::::
oscillations

:::::::
around

:::::::::::
equilibrium

:
is
:::::::::::
determined

:::
by

:::
the

:::::::
second

:::::::::
derivative

:::
of

:::
the

:::::::::
potential

::
at

::::
the

::::::::::
equilibrium

::::::
point

:::::::::
multiplied

:::
by

::::
the

::::::
inverse

::
of

::::::
mass. Around equilibrium a potential can always be approximated by a parabola.

(2) Unbounded motion E = E2. In this case particle runs at infinity x =∞.

1.4 Motion of a system of N particles

So far we have considered just one particle and its Newton’s equation

m~̈r = ~F .

For a system of N particles we have

mi~̈ri = ~Fi , i = 1, . . . , N .

This is a system of 3N coupled differential equations and its solution requites 2·3N = 6N integration
constants, given by

~ri(t = 0) , ~̇ri(t = 0) .

Definition 4. The kinetic energy of a system of N particles is

T =

N∑

i=1

mi

2
~vi · ~vi .
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· ·
m1

m2

~r1

~r2

~F12

~F21

~r1 ~r2

O

Figure 1.2: For two points central forces are equal in magnitude and act in opposite directions along
the straight line joining the points.

We assume that forces ~Fi do not depend on velocities, there is no friction and no explicit time
dependence

~Fi = ~Fi(~r1, . . . , ~rN ) .

Definition 5. Forces ~Fi are called conservative if the path integral

N∑

i=1

∫ t2

t1,γi

~Fi
d~ri
dt
dt

does not depend on a path.

Forces ~Fi are conservative precisely when there exists a function U(~r1, . . . , ~rN ) such that

~Fi = −~∇iU(~r1, . . . , ~rN ) ,

where
~∇i = ~ex

∂

∂xi
+ ~ey

∂

∂yi
+ ~ez

∂

∂zi
.

The proof is the same as for one particle. This means that
::
all

::::::
forces

:::
~Fi::::

can
:::
be

:::::::::
expressed

:::
via

::::
one

:::::
scalar

::::::::
function

:::::::::::::
U(~r1, . . . , ~rN ).

Example. Central force between two particles. Newton’s equations are

m1r̈1 = ~F1 = −f(|~r1 − ~r2|)
~r1 − ~r2

|~r1 − ~r2|
,

m2r̈2 = ~F2 = −~F1 ,

where ~F1 = ~F12 is a force applied on mass m1 and ~F2 = ~F21 is a force applied on mass m2. Here

|~r1 − ~r2| =
√

(~r1 − ~r2) · (~r1 − ~r2) =
√

(x1 − x2)2 + (y1 − y2)2 + (z1 − z2)2 .

14



We look for the potential U(|~r1 − ~r2|). We have

∂U

∂x1
= U ′

x1 − x2

|~r1 − ~r2|
,

∂U

∂x2
= −U ′ x1 − x2

|~r1 − ~r2|

and similarly for other components y1,2 and z1,2. Thus, we see that ~∇1U = U ′ ~r1−~r2|~r1−~r2| and, therefore,

~F1 = −~∇1U , provided U ′ = f .

Also,
~F2 = −~∇2U = −~F1 .

The total energy is
E =

m1

2
~̇r2

1 +
m2

2
~̇r2

2 + U(|~r1 − ~r2|) .

For instance for a gravitational field between two masses

f =
γm1m2

|~r1 − ~r2|2
=⇒ U = − γm1m2

|~r1 − ~r2|
.

Central forces are always conservative.

Definition 6. Momentum of a ith particle is

~pi = m~̇ri = m~vi .

The total momentum is

~P =

N∑

i=1

~pi .

Definition 7. Center of mass1 (also known as center of inertia) is defined as the following vector

~R =

N∑
i=1

mi~ri

M
, M =

N∑

i=1

mi ,

where M is the total mass.

Some remarks are in order.

1. Evolution equation for the center of mass is determined by the total momentum

M ~̇R =

N∑

i=1

mi~̇ri = ~P .

2. With the notion of momentum Newton’s equations can be written as

~̇pi = ~Fi .

Definition 8. Internal forces are the forces that act between N particles. External forces are the
forces that act on particles outside the system.

1It astronomy it is called barycenter.
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Examples of internal forces constitute gravitation force and electromagnetic force. In general we
have

~Fi = ~F ′i (~ri) +

N∑

j=1

~Fij . (I.1.2)

A force ~Fij is the force that jth particle exerts in ith particle.

The total momentum is conserved if the sum of all external forces vanishes. Indeed,

d~P

dt
=

N∑

i=1

mi~̈ri =

N∑

i=1

(
~F ′i +

N∑

j=1

~Fij

)
=

N∑

i=1

N∑

j=1

~Fij = 0 ,

as ~Fij = −~Fji.

Definition 9. Angular momentum of a particle is defined as

~L = ~r × ~p = m~r × ~̇r

and for ithe particle
~Li = mi~ri × ~̇ri .

The total angular momentum is

~L =

N∑

i=1

~Li .

Definition 10. Torque ~N is defined as

~N =
d~L

dt
.

For a system of particles interacting by central forces the total momentum is conserved. The proof
goes as follows. Consider the torque

d~L

dt
=

∑

i

mi
d

dt
(~ri × ~̇ri) =

∑

i

mi(~̇ri × ~̇ri) +
∑

i

mi(~ri × ~̈ri) =
∑

i

~ri × ~Fi

=
∑

i

∑

j

~ri × ~Fij =
1

2

∑

i

∑

j

[
~ri × ~Fij + ~rj × ~Fji

]
=

1

2

∑

i

∑

j

[
~ri × ~Fij − ~rj × ~Fij

]

=
1

2

∑

i

∑

j

(~ri − ~rj)× ~Fij = 0 ,

because the vector ~ri − ~rj is collinear to the vector ~Fij , see Fig. 1.2.

1.5 Two-body problem

Two body problem: two particles interacting by means of internal forces.
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1.5.1 General solution

Since we have only two particles, we can denote ~F12 = ~F and write Newton’s equations as

m1~̈r1 = ~F ,

m2~̈r2 = −~F .

These formula reflect the third Newton’s law: actio = reactio. Consider the sum and the difference
of these two equations

m1~̈r1 +m2~̈r2 = 0 ,

m1~̈r1 −m2~̈r2 = 2~F .
(I.1.3)

Introducing the center of mass

~R =
1

M
(m1~r1 +m2~r2) , M = m1 +m2 ,

we see that the first equation in (I.1.3) implies that ~̈R = 0, so that the center of mass performs the
uniform and rectilinear motion

~R = ~v0t+ ~R0 .

Now we can describe a relative motion around the center of mass. Introduce

~r = ~r1 − ~r2 , µ =
m1m2

m1 +m2
.

Here ~r is called relative coordinate and µ is reduced mass. We have

~̈r = ~̈r1 − ~̈r2 =
~F

m1
+

~F

m2
=
( 1

m1
+

1

m2

)
~F =

m1 +m2

m1m2

~F =
1

µ
~F ,

that is

µ~̈r = ~F ,

which is the only equation left to solve.

The total energy is

E = T + U =
1

2
m1~̇r

2
1 +

1

2
m1~̇r

2
2 + U(r)

The total angular momentum is

L = m1~r1 × ~̇r1 +m2~r2 × ~̇r2 .

One can show that these quantities can be spit into separately conserved quantities associated with
the center of mass and the ones corresponding to the relative motion. Namely,

1. E = ECM + Erel , where ECM = 1
2M

~̇R2 , Erel = 1
2µ~̇r

2 + U(r) .

2. ĖCM = Ėrel = 0 .

3. ~L = ~LCM + ~Lrel , where ~LCM = M ~R× ~̇R , ~Lrel = µ~r × ~̇r .

4. ~̇LCM = ~̇Lrel = 0 .
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The proof of these statements is in Tutorial II. What is especially important is that ~Lrel = µ~r × ~̇r
is conserved during the time evolution

~Lrel

dt
= 0 ,

i.e. ~Lrel remains constant all the time. This means that the relative motion happens in the plane
orthogonal to the vector ~Lrel. This follows from the fact that

~Lrel · ~r = µ(~r × ~̇r) · ~r = 0 ,

~Lrel · ~̇r = µ(~r × ~̇r) · ~̇r = 0 ,

and meaning that the vectors ~r and ~̇r lie in the plane orthogonal to ~Lrel.2 Thus, without loss of
generality, we can choose a coordinate system such that ~Lrel has only one non-trivial component
~Lrel = `~ez, ˙̀ = 0 and, therefore z = 0 = ż. Then the motion happens in the two-dimensional plane
(x, y), in particular

~Lrel = µ(xẏ − yẋ)~ez =⇒ ` = µ(xẏ − yẋ) .

As we have just discussed, ` is an integral of motion in addition to Erel.

On the two-dimensional plane we introduce polar coordinates

x = r cosϕ , y = r sinϕ ,

and compute `. We have

`

µ
= r cosϕ(���ṙ sinϕ+ r cosϕϕ̇)− r sinϕ(��

��ṙ cosϕ− r sinϕϕ̇) = r2ϕ̇ .

Thus, during the time evolution of our two-body system the quantity ` = µr2ϕ̇ remains constant.
This is nothing else but the conservation law of angular momentum, as originally discovered by
Kepler through his observations of the motion of Mars. The quantity ` has a simple geometric
meaning. Kepler introduced the sectorial velocity vs:

vs = lim
∆t→0

∆A

∆t
,

where ∆A is the area of an infinitesimal sector swept by the radius-vector q for time ∆t:

∆A =
1

2
r · rϕ̇∆t+O(∆t2) ≈ 1

2
r2ϕ̇∆t .

This equation expresses the second law by Kepler: in equal times the radius vector sweeps out equal
areas, hence the sectorial velocity is constant. This is one of the formulations of the conservation
law of angular momentum.

Now we rewrite the relative energy in polar coordinates. For simplicity we redefine the notation
Erel ≡ E. We have

Erel = E =
1

2
µ~̇r2 + U(r) =

1

2
µ(ẋ2 + ẏ2) + U(r)

=
1

2
µ
[
(ṙ cosϕ− r sinϕϕ̇)2 + (ṙ sinϕ+ r cosϕϕ̇)2

]
+ U(r) .

From here we get

E =
µ

2
(ṙ2 + r2ϕ̇2) + U(r) .

2Three points (lying not on one line) uniquely define a plane that passes through them.
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d'

�A

= '̇dt

r

Figure 1.3: The 2nd Kepler law: the sectorial velocity vs = 1
2
`
µ is constant.

Now the conservation law of ` can be used to exclude ϕ̇, namely,

ϕ̇ =
`

µr2

so that the energy integral reads as

E =
µ

2

(
ṙ2 +

`2

µ2r2

)
+ U(r) =

1

2
µṙ2 +

`2

2µr2
+ U(r) .

This can be written as

E =
1

2
µṙ2 + Ueff ,

where we have introduced an effective potential

Ueff =
`2

2µr2
+ U(r) .

Ue↵

Figure 1.4: Effective potential.

Thus, the problem is reduced to a one-dimensional one!
Initially, we started with 6 degrees of freedom of two bod-
ies. Separating the motion of the center of mass, we re-
duced the number of degrees of freedom to 3. Conserva-
tion of angular momentum left us with two degrees of free-
dom on a plane and, simultaneously, allowed us to remove
the angle variable leaving us with just one-dimensional
problem for r.

Time evolution. Fixing the value of energy E, we sep-
arate the variables as was discussed above

dt = ± dr√
2
µ (E − Ueff(r))
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Figure 1.5: The left picture shows an orbit of a point in a central field. The right picture shows an
orbit everywhere dense in an annulus.

so that the time evolution r = r(t) will be determined
from

t− t0 = ±
∫ r

r0

dr′√
2
µ (E − Ueff(r′))

.

Form of the trajectory. One can also derive the form of the trajectory r = r(ϕ) directly, i.e.
without appealing to first finding r(t) and ϕ(t). Indeed, along the trajectory we have

dr(ϕ)

dt
=
dr

dϕ
ϕ̇ ,

so that

±
√

2

µ
(E − Ueff(r)) =

dr

dϕ

`

µr2
.

From here

dϕ = ± dr
√

2µ
` r2

√
E − Ueff(r)

,

that yields upon integration

ϕ− ϕ0 = ± `√
2µ

∫ r

r0

dr′

r′2
√
E − Ueff(r′)

.

This is an equation defining the trajectory for given values of E and `.

These considerations complete the general solution of the two-body problem. Further progress relies
on specification of the potential U(r).

Qualitative behaviour of orbits. The qualitative behaviour of orbits can be understood from
the graph of the effective potential Ueff , see Fig. 1.4. All orbits corresponding to the given E and `
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1.5.2 Kepler problem

Kepler laws. Consider Newton’s potential U(r) = �k
r . The equation defining the trajectory will

be then
'(r) =

`p
2µ

Z r dr0

r02
p

E � Ue↵

=
`p
2µ

Z r dr0

r02
q

E + k
r0 � `2

2µr02

.

This integral can be computed explicitly. To this end, we make the change of variables

r0 =
1

x
, dr0 = �dx

x2

and get

'(r) = �
Z 1

r dxq
2µE
`2 + 2µk

`2 x � x2

.

The right hand side here is the standard integral

Z
dxp

� + 2�x � x2
= � arccos

 
x � �p
�2 + �

!
, �2 + � > 0 .

We therefore identify

� =
µk

`2
, � =

2µE

`2
.

In particular, �2 + � = µ2k2

`4 + 2µE
`2 . In this way we get

'(r) = arccos

 
1
r � µk

`2q
µ2k2

`4 + 2µE
`2

!
= arccos

 
`2

µkr � 1
q

1 + 2E`2

µk2

!
.

Defining the following quantities

p =
`2

µk
, e =

s
1 +

2E`2

µk2
,

we can write the equation for the orbit in the form

r =
p

1 + e cos'
.

This is the so-called focal equation of a conic section, see Fig. 1.6. When e < 1, i.e. E < 0, the
conic section is an ellipse. The number p is called the parameter of the ellipse and e the eccentricity.
The motion is bounded for E < 0.

and values of energy in the interval � k2

2J2  E  0, equation (??) has two solutions, rmin and
rmax, given by

rmin =
�k +

p
2EJ2 + k2

2E
,

rmax =
�k �

p
2EJ2 + k2

2E
.
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Figure 1.6: Effective potential of the Kepler problem.

1.5.2 Kepler problem

Equation for trajectories. Consider Newton’s potential U(r) = �k
r . The equation defining the

trajectory will be then
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Figure 1.6: Effective potential of the Kepler problem.

are in the region Ueff(r) ≤ E. On the boundaries of this region Ueff = E, so that ṙ = 0. However,
the point continues to move because at these points ϕ̇ 6= 0. The inequality Ueff(r) ≤ E gives one or
several annular regions in the plane

0 ≤ rmin ≤ r ≤ rmax ≤ ∞ .

If rmin ≤ r ≤ rmax < ∞, then the motion is bounded and takes place inside the annulus between
the circles with radius rmin and rmax. The shape of the orbit is shown on the left picture of Fig.
1.5. The angle ϕ varies monotonically, while r oscillates between rmin and rmax. The points where
r = rmin are called pericentral, and where r = rmax, apocentral (if the center is the earth – perigee
and apogee; if it is the sun – perihelion and aphelion; if it is the moon – perilune and apolune).

In general the orbit is not closed. The angle Φ between successive pericenters and apocenters is
given by

Φ =
`√
2µ

∫ rmax

rmin

dr′

r′2
√
E − Ueff(r′)

.

The angle between two successive pericenters is twice big. The orbit is closed if 2Φ is commensurable
(rationally comparable) with 2π, i.e. if 2Φ = 2πmn , where m,n are integers. Then after repetition
n times the period of time between reaching two successive apocenters, the radius-vector will make
m full revolutions and return to its original position, i.e. the trajectory will close. If 2Φ is not
commensurable with 2π then the orbit is everywhere dense on the annulus. If rmin = rmax, i.e. E
is at minimum of Ueff , then the annulus degenerates into a circle, which is also the orbit.

Determination of a central potential for which all bounded orbits are closed is known as the Bertrand
problem. Remarkably, it appears that there are only two potentials for which all bounded orbits are
closed. They are

U = kr2 , k > 0

and

U = −k
r
, k > 0 .

The first is the spacial harmonic oscillator potential, the second one is Newton’s gravitational poten-
tial. For k > 0 the potential is attractive. Motion in Newton’s gravitational potential is the famous
Kepler problem of planetary motion, which we now consider.
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1.5.2 Kepler problem

Equation for trajectories. Consider Newton’s potential U(r) = −kr , k > 0. The equation defining
the trajectory will be then

ϕ(r) =
`√
2µ

∫ r dr′

r′2
√
E − Ueff

=
`√
2µ

∫ r dr′

r′2
√
E + k

r′ − `2

2µr′2

.

This integral can be computed explicitly. To this end, we make the change of variables

r′ =
1

x
, dr′ = −dx

x2

and get

ϕ(r) = −
∫ 1

r dx√
2µE
`2 + 2µk

`2 x− x2

.

The right hand side here is the standard integral

∫
dx√

γ + 2βx− x2
= − arccos

(
x− β√
β2 + γ

)
, β2 + γ > 0 .

We therefore identify

β =
µk

`2
, γ =

2µE

`2
.

In particular, β2 + γ = µ2k2

`4 + 2µE
`2 > 0, i.e. E > −µk2

2`2 , where −
µk2

2`2 is the minimum of the effective
potential, see Fig. (1.6). In this way we get

ϕ(r) = arccos

(
1
r −

µk
`2√

µ2k2

`4 + 2µE
`2

)
= arccos

(
`2

µkr − 1
√

1 + 2E`2

µk2

)
. (I.1.4)

Defining the following quantities

p =
`2

kµ
, e =

√
1 +

2E`2

µk2
,

we can write the equation for the orbit in the form

r =
p

1 + e cosϕ
.

This is the so-called focal equation of a conic section, see Fig. 1.7. When e < 1, i.e. E < 0, the
conic section is an ellipse. The number p is called the parameter of the ellipse and e the eccentricity.
The motion is bounded for E < 0, as is seen from the graph of the effective potential Fig. 1.6.

Note that in (I.1.4) the integration constant was set to zero which corresponds to the choice of the
reference point for the angle ϕ at the pericenter: ϕ(rmin) = 0, where

rmin =
k

2E

(
− 1 +

√
1 +

2E`2

µk2

)
=

k

2E
(e− 1) =

k

2E

(e2 − 1)

1 + e
=

p

1 + e
.
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Figure 1.7: Three conic sections: parabola e = 1, ellipse e < 1 and hyperbola e > 1.

Elliptic orbits and Kepler’s laws. For an elliptic orbit corresponding e < 1, we further notice
three distinguished points

ϕ = 0 : r =
p

1 + e
= rmin ,

ϕ =
π

2
: r = p ,

ϕ = π : r =
p

1− e
= rmax ,

which give us certain geometric intuition about various quantities appearing in the description of
elliptic orbits, see Fig. 1.8. In particular, the major semi-axis a is determined as

2a =
p

1− e
+

p

1 + e
=

2p

1− e2
.

We also have
c = a− p

1 + e
=

ep

1− e2
.

From the last two equations the eccentricity can be determined via the major semi-axes as

e =
c

a
=

√
a2 − b2
a

=

√
1− b2

a2
.

We can now formulate the Kepler laws:

1) The first law: planets describe ellipses with the Sun at one focus.

2) The second law: the sectorial velocity is constant.

3) The third law: the period of revolution around an elliptical orbit depends only on the size of
the major semi-axes. The squares of the revolution periods of two planets on different elliptical
orbits have the same ratio as the cubes of their major semi-axes.

The third law follows from the following considerations. Let T be a revolutionary period and A
be the area swept out by the radius vector over the period. An ellipse with the semi-axes a and b
encompasses the area

A = πab = πa2
√

1− e2 = π
p2

(1− e2)2

√
1− e2 = π

p2

(1− e2)
3
2

=
πk`

µ1/2(
√

2|E|)3
,

23



p

ab

c| {z }|{z}
p

1 � e

p

1 + e

O

x2

a2
+

y2

b2
= 1

x

y

'

r

Figure 1.8: Keplerian ellipse: semi-axes a, b, parameter p and eccentricity e.

where we have taken into account that

a =
p

1− e2
=

k

2|E| . (I.1.5)

On the other hand, since the sectorial velocity vs is constant, we have
∫ T

0

vs =

∫ T

0

dt
dA

dt
= A , → vsT =

`

2µ
T = A ,

that is,

T =
2µA

`
=

2πkµ1/2

(
√

2|E|)3
= 2π

(µ
k

)1/2

a3/2 =⇒ T 2 ∼ a3 .

It is interesting that according to (I.1.5) the total energy depends only on the major semi-axis a
and it is the same for the whole set of elliptical orbits from a circle of radius a to a line segment of
length 2a. The value of the second semi-axis depends on the angular momentum.3

Kepler’s three laws of planetary motion, published around 1610, were the result of his pioneering
analysis of observations and laid the groundwork for Newton’s great advances. The second law, the
conservation of sectorial velocity, is a general theorem for central force motion. However, the first
– that planets move in elliptical orbits around the Sun at one focus – and the third are restricted
specifically to the inverse-square law of force. Eccentricities of planets in the solar system are rather
small, see Table 1.11, so the planet’s orbits are almost circular.

Hyperbolic orbits. For E ≥ 0 the motion is infinite. If E > 0, them e > 1 and the trajectory is a
hyperbola that snakes around the center of the field (focus). The distance to pericenter is

rmin =
p

e + 1
= a(e− 1) ,

where
a =

p

e2 − 1
=

k

2E
, b =

√
c2 − a2 = a

√
e2 − 1 =

p√
e2 − 1

3An elementary derivation of the 3rd Kepler law can be done by assuming that the orbits are circular. In that case
the centrifugal force mv2/r, where r is the radius of the orbit and v is the linear velocity should be balanced by the

gravitational force: mv2

r
= γmM

r2
, i.e. v =

√
γM
r
. The period of revolution is then T = 2πr

v
= 2π√

γM
r3/2, hence the

3rd Kepler law T ∼ r3/2.
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1.5.2 Kepler problem

Kepler laws. Consider Newton’s potential U(r) = �k
r . The equation defining the trajectory will

be then
'(r) =

`p
2µ

Z r dr0

r02
p

E � Ue↵

=
`p
2µ

Z r dr0

r02
q

E + k
r0 � `2

2µr02

.

This integral can be computed explicitly. To this end, we make the change of variables

r0 =
1

x
, dr0 = �dx

x2

and get

'(r) = �
Z 1

r dxq
2µE
`2 + 2µk

`2 x � x2

.

The right hand side here is the standard integral

Z
dxp

� + 2�x � x2
= � arccos

 
x � �p
�2 + �

!
, �2 + � > 0 .

We therefore identify
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, � =
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`2
.

In particular, �2 + � = µ2k2
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`2 . In this way we get

'(r) = arccos
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r � µk

`2q
µ2k2

`4 + 2µE
`2

!
= arccos

 
`2

µkr � 1
q

1 + 2E`2

µk2

!
.

Defining the following quantities

p =
`2

µk
, e =

s
1 +

2E`2

µk2
,

we can write the equation for the orbit in the form

r =
p

1 + e cos'
.

This is the so-called focal equation of a conic section, see Fig. 1.6. When e < 1, i.e. E < 0, the
conic section is an ellipse. The number p is called the parameter of the ellipse and e the eccentricity.
The motion is bounded for E < 0.

and values of energy in the interval � k2

2J2  E  0, equation (??) has two solutions, rmin and
rmax, given by

rmin =
�k +

p
2EJ2 + k2

2E
,

rmax =
�k �

p
2EJ2 + k2

2E
.
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Figure 1.6: Effective potential of the Kepler problem.
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Figure 1.6: Effective potential of the Kepler problem.
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Figure 1.9: For E � 0 the motion is over a hyperbola.

where
a =

p

e2 � 1
=

k

2E

is the major semi-axis of the hyperbola.2

In the case E = 0 the eccentricity e = 1 and a particle moves over parabola with the distance to
the pericentum tmin = p/2. This case is realised when a particle starts its motion at infinite with
zero initial velocity.

c = ae

Laplace-Runge-Lenz vector. It turns out that the Kepler problem with its specific potential
(with any sign of k) admits one more non-trivial conserved quantity that is absent for a generic
central potential: the Laplace-Runge-Lenz vector ~A

~A = ~̇r ⇥ ~Lrel � 
~r

r
.

Its conservation is proved in Tutorial IV.

Conservation of this vector can be verified in a straightforward manner. Indeed, we have

Ṙ = v̇ ⇥ J � k
v

r
+ k

q hv, qi
r3

= v̇ ⇥ (q ⇥ v) � k
v

r
+ k

q hv, qi
r3

.

On the other hand,

v̇ = �@V

@r

q

r
= �k

q

r3

and, therefore,

Ṙ = �k
q ⇥ (q ⇥ v)

r3
� k

v

r
+ k

q hv, qi
r3

.

Now, taking into account that q ⇥ (q ⇥ v) = q hv, qi � r2v, we get Ṙ = 0.

2The canonical equation of the hyperbola is x2

a2 � y2

b2
= 1.
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Figure 1.9: For E ≥ 0 the motion goes over a hyperbolic trajectory. Here O is one of the two foci
and is a force center.

are the semi-axes of the hyperbola (a is the major semi-axis). To demonstrate that we indeed obtain
the hyperbola, we compute x and y and verify that the obey the canonical equation of the hyperbola

x2

a2
− y2

b2
= 1 .

From Fig. 1.9, we read off

x = −r cosϕ+ ae = − p cosϕ

1 + e cosϕ
+

pe

e2 − 1
=

p

e2 − 1

e + cosϕ

1 + e cosϕ
.

and

y = r sinϕ =
p sinϕ

1 + e cosϕ
.

Thus, after some algebraic manipulations we arrive at

x2

a2
− y2

b2
=

(e + cosϕ)2

(1 + e cosϕ)2
− (e2 − 1) sin2 ϕ

(1 + e cosϕ)2
= 1 ,

confirming that the trajectory is a hyperbola.

In the case E = 0 the eccentricity e = 1 and a particle moves over parabola with the distance to the
pericentum rmin = p/2. This case is realised when a particle starts its motion at infinite with zero
initial velocity.

Laplace-Runge-Lenz vector. It turns out that the Kepler problem with its specific potential
(with any sign of k) admits one more non-trivial conserved quantity that is absent for a generic
central potential: the Laplace-Runge-Lenz vector4 ~A

~A = ~̇r × ~Lrel − k
~r

r
.

Its conservation is proved in Tutorial IV. The existence of the Laplace-Runge-Lenz vector suggests
that the Kepler problem has a hidden symmetry and this turns out to be so(4) ' su(2)⊕ su(2).

4It was actually discovered by Jacob Hermann (16 July 1678–11 July 1733), a mathematician who worked on
problems in classical mechanics.
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Figure 1.10: True anomaly ', eccentric anomaly u and their relation.

Its conservation is proved in Tutorial IV. The existence of the Laplace-Runge-Lenz vector suggests
that the Kepler problem has a hidden symmetry and this turns out to be so(4) ' su(2) � su(2).

r =
p

1 + e cos'

r = a(1 � e cos u)

tan
'

2
=

r
1 + e

1 � e
tan

u

2

Solving Kepler’s equation. The last step in solving Kepler’s problem is to determine the evolution
laws along the already established elliptic orbit.3 This is most easily done in terms of the so-called
eccentric anomaly u, rather than in terms of the true anomaly '. Looking at Fig. 1.10, it is easy to
see that

r cos'+ ae = a cos u ,

where c = ae is half the distance between two foci. Expressing the product r cos' from the equation
r = p/(1 + e cos'), we get

r = a(1 � e cos u) .

Now we have two expressions for the radius r

p

1 + e cos'
= r = a(1 � e cos u) ,

3We do it here for an elliptic orbit only.
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Figure 1.10: True anomaly ϕ, eccentric anomaly u and their relation.

Solving Kepler’s equation. The last step in solving Kepler’s problem is to determine the evolution
laws along the already established elliptic orbit.5 This is most easily done in terms of the so-called
eccentric anomaly u, rather than in terms of the true anomaly ϕ. Looking at Fig. 1.10, it is easy to
see that

r cosϕ+ ae = a cosu ,

where c = ae is half the distance between two foci. Expressing the product r cosϕ from the equation
r = p/(1 + e cosϕ), we get

r = a(1− e cosu) .

Now we have two expressions for the radius r

p

1 + e cosϕ
= r = a(1− e cosu) ,

from which we can find the relation between the true and eccentric anomalies, namely

1− e2

1 + e cosϕ
= 1− e cosu → cosϕ =

e− cosu

e cosu− 1

and further,6

tan
ϕ

2
=

√
1 + e

1− e
tan

u

2
.

5We do it here for an elliptic orbit only.
6It is convenient to express cosϕ and cosu with the tangent of the corresponding half-argument, cf. formulae on

Fig. 1.10.
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Introducing the coordinate system as shown in Fig. 1.10, we can express the cartesian coordinates
(x, y) of a point on the orbit via the eccentric anomaly u. Namely,

x = a cosu− ae = a(cosu− e) . (I.1.6)

As to y, we have

y = r sinϕ = a(1− e cosu)
2 tan ϕ

2

1 + tan2 ϕ
2

= a(1− e cosu)
2
√

1+e
1−e tan u

2

1 + 1+e
1−e tan2 u

2

.

Further simplification of the right hand side of the last formula gives

y = a
√

1− e2 sinu . (I.1.7)

Now we recall that ` = µr2φ̇ is an integral of motion. We can rewrite it in cartesian coordinates

` = µr2φ̇ = µ(xẏ − yẋ) .

Substituting here the formulae (I.1.6) and (I.1.7), we get the following differential equation

` = µa2
√

1− e2(1− e cosu)
du

dt
. (I.1.8)

Separating the variables
`

µa2
√

1− e2
dt = du− ed sinu

and integrating, one finds the famous Kepler’s equation

u− e sinu = n(t− t0) = ζ , n ≡ `

µa2
√

1− e2
. (I.1.9)

The function ζ depends linearly on time and is called mean anomaly.

Equation (I.1.9) can be solved in terms of power series and the solution is given by

u(e, ζ) = ζ + 2

∞∑

m=1

Jm(me)

m
sinmζ . (I.1.10)

Here Jm(z) is the Bessel function and the series converges for e < 1.

The derivation of (I.1.10) is carried out as follows. It is clear that the solution is a function
u ≡ u(e, ζ) and from the equation is clear that if we change ζ → ζ + 2π and simultaneously change
u→ u+ 2π then the equation will remain invariant. Thus, u(ζ)− ζ is periodic in ζ with period 2π,
therefore it can be expanded in a Fourier series. Differentiating (I.1.9), we obtain

du

dζ
=

1

1− e cosu
≡ f(ζ) ,

where f(ζ) must be periodic and, therefore, admits an expansion

f(ζ) =
1

2
a0 +

∞∑

m=1

am cosmζ +

∞∑

m=1

bm sinmζ ,

where the corresponding coefficients are

a0 =
1

π

∫ 2π

0

f(ζ)dζ , am =
1

π

∫ 2π

0

f(ζ) cosmζdζ , bm =
1

π

∫ 2π

0

f(ζ) sinmζdζ .
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Figure 1.11: Solar system data.

From Kepler’s equation one can see that u(−ζ) = −u(ζ) and, therefore, the derivative du
dζ is an even

function of ζ. Consequently, the coefficients bm vanish. Thus, we have

du

dζ
=

1

2π

∫ 2π

0

dζ

1− e cosu
+

∞∑

m=1

cosmζ

π

∫ 2π

0

cosmζdζ

1− e cosu

=
1

2π

∫ 2π

0

du+

∞∑

m=1

cosmζ

π

∫ 2π

0

cosm(u− e sinu)du .

Now one needs to recall the definition of the Bessel function

Jm(z) =
1

2π

∫ 2π

0

cos(mx− z sinx)dx =

∞∑

k=0

(−1)k(z/2)m+2k

k!(m+ k)!
.

Therefore,

du

dζ
= 1 + 2

∞∑

m−1

Jm(me) cosmζ .

It remains to integrate this formula with respect to ζ and get (I.1.10).

1.5.3 Scattering

So far we have discussed the behaviour of two particles that interacted through an attractive two-
body central potential. We discussed the nature of bounded and unbounded orbits which might

28



⇥

·
O

b
'

rmin

r

~v

~v0
y

x

~̇r
�

�

↵

z

c

a

rmin = c + a = ae + a = a(e + 1)

Figure 1.12: Scattering in a repulsive potential. The impact parameter b replaces angular momentum
`. The scattering angle Θ is a function of b.

appear, and quantitatively described the orbits in the case of the Kepler problem. However, we can
also consider the case of a repulsive central potential. In this case, the two particles will not orbit
each other - they will at most approach each other, before the repulsive potential causes them to move
away from each other, and never meet again. Such a behaviour is typically referred to as scattering,
see Fig. 1.12. This type of scenario is incredibly important in a wide range of physics, especially in
condensed matter systems (where neutrons being scattered of a material reveal information about the
microscopic details of the material) and in high energy physics (where scattering elementary particles
against each other can reveal information about the existence of new fundamental particles). It is
scattering of α particles bombarding a gold foli that led Rutherford to the discovery of the atomic
kernel.

We consider elastic scattering which means that in the scattering process particles do not change.
Denote by ~v1, ~v2 the particle velocities before the interaction and ~v′1, ~v′2 after. We have

• Conservation of energy

1

2
m1~v

2
1 +

1

2
m2~v

2
2 =

1

2
m1~v

′2
1 +

1

2
m2~v

′2
2 .

• Conservation of momentum

m1~v1 +m2~v2 = m1~v
′
1 +m2~v

′
2 .

In total there are 4 equations for 6 unknowns, which are ~v′1 and ~v′2. This leaves us with 6 − 4 = 2
unknowns. However, the angular momentum is conserved, therefore, scattering happens on a plane,
this leaves only one unknown which is scattering angle.

To proceed, we separate the relative motion from the motion of the center of mass. We have

Erel =
1

2
µ~̇r2 + U(r) , Ėrel = 0 , lim

t→±∞
U(r(t)) = 0 .

Requiring the potential to vanish at asymptotically infinite times, we have the following asymptotic
condition on the energy

lim
t±∞

Erel = lim
t±∞

1

2
µ~̇r2 =

{
1
2µ~v

2 , t→ −∞ ,
1
2µ~v

′2 , t→ +∞ .
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From conservation of energy it is then follows that

|~v| = |~v′| .

Now our task is to obtain the scattering angle Θ, see Fig. 1.12.

Impact parameter. Consider the angular momentum ~Lrel = µ~r × ~̇r = `~ez, where ` = µr2ϕ̇.
Evaluating the integral ` at a moment t, we have

` = µr(t)v(t) sinα(t) = µv(t)
[
r(t) sinα(t)

]
,

where r(t) and v(t) are lengths of vectors ~r(t) and ~v(t) = ~̇r(t), respectively, α(t) is an angle between
~r(t) and ~v(t). Asymptotically, as t → −∞, v(t) tends to the initial velocity v, while α(t) tens to
π − ϕ(t). Thus, asymptotically,

r(t) sinα(t)→ r(t) sin(π − ϕ(t)) = r(t) sin(ϕ(t))→ b ,

as is seen from Fig. 1.12. Thus, in the limit t→ −∞, we find

` = µvb .

This formula allows one to trade the angular momentum ` for the impact parameter b and the initial
velocity v. We therefore have

` = µvb = µr2ϕ̇ =⇒ ϕ̇ =
vb

r2
> 0 .

The fact that ϕ̇ is positive shows that ϕmonotonically grows starting from ϕ = 0 when time increases
from −∞ to +∞.

Equation for the trajectory. Further, we have

dϕ = ± `√
2µ

dr

r2
√
E − Ueff(r)

.

For the repulsive Coulomb potential

U =
k

r
, k > 0 ,

the effective potential

Ueff =
k

r
+

`2

2µr2

is a function that monotonically decreases from +∞ to zero for r running from 0 to ∞. The energy
of a particle can only be positive and the motion is always infinite (scattering).

The particle trajectory is symmetric with respect to the line that passes through the scattering
center O and the point of the trajectory closest to O. On the right half of the trajectory, we have

dϕ = − `√
2µ

dr

r2
√
E − Ueff(r)

,

because decreasing of r corresponds to increasing of ϕ. We then integrate

ϕ =

∫ ϕ

0

dϕ = − `√
2µ

∫ r

∞

dr′

r′2
√
E − Ueff(r′)

=
`√
2µ

∫ ∞

r

dr′

r′2
√
E − Ueff(r′)

.
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Substituting here Ueff as well as ` = µvb and E = 1
2µv

2, we get

ϕ = b

∫ ∞

r

dr′

r′2
√

1− 2k
µv2r′ − b2

r′2

,

The change of variables u = 1/r yields

ϕ = −
∫ 0

1
r

bdu√
1− 2k

µv2u− b2u2
=

∫ 1
r

0

bdu√
1− 2k

µv2u− b2u2
.

First we compute the indefinite integral7

∫
bdu√

1− 2k
µv2u− b2u2

= arcsin
bu+ k

bµv2√
1 + k2

µ2b2v4

.

Then, for the definite one we will find the following answer

ϕ = arcsin

b
r + k

bµv2√
1 + k2

µ2b2v4

− arcsin

k
bµv2√

1 + k2

µ2b2v4

.

This formula can be further simplified by using the identity

arcsinx− arcsin y = arccos
(√

1− x2
√

1− y2 + xy
)
, x > y .

Namely, we obtain the equation describing the orbit

ϕ = arccos
1 + µb2v2

kr + b2µ2v4

k2

√
1− 2k

µv2r − b2

r2

1 + b2µ2v4

k2

,

or solving this equation for r

r(ϕ) =
b

2

csc2 ϕ
2

cot ϕ2 − k
µbv2

. (I.1.11)

This solution satisfies correct boundary condition ϕ|r=∞ = 0. The minimal distance (periapsis)
from the force center to the orbit is given by the is a positive root of

1− 2k

µv2r
− b2

r2
= 0 ,

which is

rmin = k
1 +

√
1 + b2µ2v4

k2

µv2
=

k

µv2
(1 + e) ,

where we have taken into account the expression for eccentricity

e =

√
1 +

2E`

µk2
=

√
1 +

b2µ2v4

k2
. (I.1.12)

7See e.g. I. S. Gradshteyn and I. M. Ryzhik, Table of integrals, series and products, Academic Press, 1965, page
81, integral 2.261.
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Impact parameter as a function of the scattering angle. From Fig. 1.12 we conclude that
the angle Φ is then given by

Φ = ϕ(rmin) = arccos
1√

1 + b2µ2v4

k2

= arccos
1

e
.

The scattering angle is computed via Φ as

Θ = π − 2Φ .

Thus,

sin
Θ

2
= sin

(π
2
− Φ

)
= cos Φ =

1

e
and from here it follows that

cot2 Θ

2
= e2 − 1 =

b2µ2v4

k2
.

This allows us to express the impact parameter in terms of the scattering angle

b =
k

µv2
cot

Θ

2
. (I.1.13)

One remark is in order. Equation (I.1.11) for the trajectory r = r(ϕ) exhibits a pole at ϕ0 where

cot
ϕ0

2
=

k

µbv2

This pole corresponds to the angle ϕ0 = 2Φ when r →∞ on the outgoing branch of the trajectory.
Indeed, since cos Φ = 1/e, we find

cot
ϕ0

2
= cot Φ =

cos Φ

sin Φ
=

1

e

1√
1− 1

e2

=
1√

e2 − 1
=

k

µbv2
,

where we have used (I.1.12).

Trajectory is a hyperbola. Equation (I.1.11), although looks complicated, still defines a hyper-
bola. To see this, we will use that cot Φ = k

µbv2 , so that

r(ϕ) =
b

2

csc2 ϕ
2

cot ϕ2 − cot Φ
=
b

2

1

sin2 ϕ
2

(
1

sinϕ + cotϕ− cot Φ
) =

b

2

1

sin2 ϕ
2

(
1

sinϕ −
sin(ϕ−Φ)
sinϕ sin Φ

)

=
b

2

sin Φ
sin2 ϕ

2

sinϕ (sin Φ− sin(ϕ− Φ))︸ ︷︷ ︸
2 cos ϕ2 sin 2Φ−ϕ

2

=
b sin Φ

2 sin ϕ
2 sin 2Φ−ϕ

2

.

Thus, we finally obtain

r(ϕ) =
b sin Φ

cos(ϕ− Φ)− cos Φ
=

b tan Φ

−1 + 1
cos Φ cos(ϕ− Φ)

.

Recalling now that 1/ cos Φ = e and b tan Φ = µb2v2

k = `2

µk = p, we get for the equation describing
the trajectory the following answer

r(ϕ) =
p

−1 + e cos(ϕ− Φ)
.
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This is an equation for a hyperbola passing outside the force center. Finally, we note that the impact
parameter b coincides with what would be called the (non-major) “semi-axis". Indeed, the major
semi-axis a and the parameter c are

a =
rmin

1 + e
=

k

µv2
, c = ae ,

so that √
c2 − a2 = a

√
e2 − 1 =

k

µv2

bµv2

k
= b .

Differential cross section. In physical applications one has to deal not with scattering of an
individual particle but with scattering of a beam of the same particles falling on a target with the
same velocity ~v. Different particles in the beam have different impact parameters and, therefore,
scatter under different angles Θ. Denote by dN the number of particles scattered per unit time
into angles between Θ and Θ + dΘ. By itself, the number dN is not convenient to characterise the
scattering process, because it depends on the density L of the incident beam. Therefore, one uses
the quantity

dσ =
dN

L
,

where L is the number of incident particles per unit area per unit time, called luminosity.8 The
quantity dσ has dimension of area and is called differential cross section. It is determined by a force
field that scatters and represents one of the most important characteristics of the scattering process.

We assume that the dependence of b on Θ is monotonic (this is not always so and depends on a
scattering potential), i.e. the scattering angle is a monotonically decreasing function of the impact
parameter. In this case particles that scatter in the interval between Θ and Θ + dΘ are the ones
that have the impact parameter between b(Θ) and b(Θ) + db(Θ). The number of these particles is
equal to the area of an annulus between circles with radius b and b+ db multiplied with L , that is
dN = 2πbdb ·L . Thus, for the differential cross section we get

dσ = 2πbdb.

In order to find the dependence of the differential cross section on the scattering angle, we rewrite
this formula in the form

dσ = 2πb
∣∣∣ db
dΘ

∣∣∣dΘ ,

where the modulus is taken because in general db
dΘ is negative (with Θ increasing b is decresing).

Often it is convenient to consider dσ not with respect to the flat angle Θ, but rather with respect
to the solid angle dΩ = 2π sin ΘdΘ. Then the previous formula can be rewritten in the form

dσ =
b

sin Θ

∣∣∣ db
dΘ

∣∣∣dΩ ,

or, in other words,

dσ

dΩ
=

b

sin Θ

∣∣∣ db
dΘ

∣∣∣ . (I.1.14)

This is one of the main formulas of the scattering theory. The total cross section is defined as

σt =

∫

S2

dσ(Ω)

dΩ
dΩ = 2π

∫ π

0

dσ(Θ)

dΘ
sin ΘdΘ .

8We assume that the beam is homogeneous over its cross section.
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Differential cross section for Coulomb scattering. Now we can compute the cross section
which corresponds to scattering in the repulsive Coulomb field. Substituting (I.1.13) into (I.1.14),
we find

dσ(Θ)

dΩ
=

k2

µ2v4

cot Θ
2

sin Θ

∣∣∣∣∣
d cot Θ

2

dΘ

∣∣∣∣∣ =
1

4

( k

µv2

)2 1

sin4 Θ
2

=
1

4

( k

2E

)2 1

sin4 Θ
2

.

This is the famous Rutherford formula, originally derived by Rutherford for the scattering of α
particles by atomic nuclei. The total cross section is divergent as a consequence of a long-range
force character of the Coulomb field. Note that the formula for the differential cross section does
not depend on the sign of k and is valid for both the attractive and repulsive Coulomb potentials.

34



Chapter 2

Lagrangian and Hamiltonian
mechanics

“...the Lagrangian and Hamilton’s
principle together form a compact
invariant way of obtaining mechani-
cal equations of motion. This pos-
sibility is not reserved to mechanics
only; in almost every field of physics
variational principles can be used to
express the “equations of motion,"
whether they be Newton’s equations,
Maxwell’s equations, or the Schrödin-
der equation."

Herbert Goldstein “Classical
Mechanics"

Lagrangian mechanics describes motion in a mechanical system by means of the configuration space.
A newtonian potential system is a particular case of a lagrangian system (the configuration space in
this case is euclidean, and the lagrangian function is the difference between the kinetic and potential
energies).

The lagrangian point of view allows us to solve completely a series of important mechanical problems,
including problems in the theory of small oscillations and in the dynamics of a rigid body.

2.1 Lagrangian mechanics

Here we consider the formulation of the lagrangian mechanics. We start with the principle of the
least action, introduce the action and derive the Euler-Lagrange equations. We also give a lagrangian
description of the newtonian mechanics.

2.1.1 Principle of the least action

To determine a state of a system of N particles in space, one needs to specify N radius-vectors, i.e.
3N coordinates. In general, the number of independent quantities that are needed to be given in
order to specify the position of a system is called the number of degrees of freedom. In the present
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case it is n = 3N . In fact, these quantities should not necessarily be cartesian coordinates of the
particles. Depending on the problem at hand, it might be more convenient to choose some other
coordinates. Any n quantities q1, q2, . . . , qn which fully characterise the position of the system (with
n degrees of freedom) are called its generalised coordinates, while their derivatives q̇i are called
generalised velocities.

The most general formulation of laws of motion of mechanical systems is given by the so-called
principle of the least action1 (Maupertuis’s-Hamilton’s principle). According to this principle, a
mechanical system is characterised by a certain function of generalised coordinates and velocities

L(q1, q2, . . . , qn, q̇1, q̇2, . . . , q̇n, t) ≡ L(q, q̇, t)

and motion of the system satisfies a condition that we now describe.

Let at t = t1 and t = t2 the system be at positions characterised by two sets of coordinates, q(1)

and q(2), respectively. Then between these two positions the systems moves in such a way that the
integral

S =

∫ t2

t1

dt L(q, q̇, t) (I.2.1)

will have its extremal value. Function L is called the lagrangian function or simply lagrangian
and the integral S is called action. The fact that L depends on q and q̇ only, but not on more
higher derivatives q̈, . . . , reflects the fact that a mechanical state of a system is fully determined by
coordinates and velocities.

Now we derive differential equations which solve the problem about minimising (I.2.1). For simplicity
we start with a system with one degree of freedom. Let q = q(t) be a function for which S has a
minimum. This means that S will take large values if we replace q(t) by any function of the form

q(t) + δq(t) ,

where δq is a function that is small on the whole interval from t1 to t2, that is |δq(t)| < ε and
|δ̇q(t)| < ε, this function is called variation of q. Since at t1 and t2 all comparable functions should
have the one and the same values q(1) and q(2), we should have

δq(t1) = δq(t2) = 0 . (I.2.2)

The change of S under the replacement of q for q + δq is given by
∫ t2

t1

dt L(q + δq, q̇ + δ̇q, t)−
∫ t2

t1

dt L(q, q̇, t)

=

∫ t2

t1

dt

(
∂L

∂q
δq +

∂L

∂q̇
δ̇q + . . .

)
.

Expansion of this difference over powers of δq and δ̇q under the integral starts for the linear terms.
The necessary condition for the extremum of S is the vanishing of all these linear terms, the latter
are called the first variation (or simply variation) δS of the integral. Thus, for the variation we have

δS =

∫ t2

t1

dt

(
∂L

∂q
δq +

∂L

∂q̇
δ̇q

)
=

∫ t2

t1

dt

(
∂L

∂q
δq +

∂L

∂q̇

d

dt
δq

)
.

1More accurately, the principle of stationary action.
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The condition of the extremum of S is then

δS =

∫ t2

t1

dt

(
∂L

∂q
δq +

∂L

∂q̇

d

dt
δq

)
= 0 .

Here we integrate d/dt by parts and get

δS =

∫ t2

t1

dt

(
∂L

∂q
− d

dt

∂L

∂q̇

)
δq +

∂L

∂q̇
δq

∣∣∣∣∣

t2

t1

= 0 .

But doe to (I.2.2), the boundary terms vanish and we get

δS =

∫ t2

t1

dt

(
∂L

∂q
− d

dt

∂L

∂q̇

)
δq = 0 .

Thus, we are left with the integral which should vanish for arbitrary δq. Due to the basic lemma of
the variational calculus this is only possible if the integrand vanishes and we obtain the following
equation

d

dt

∂L

∂q̇
− ∂L

∂q
= 0 .

If there are n degrees of freedom, one has to vary n functions qi(t)

d

dt

∂L

∂q̇i
− ∂L

∂qi
= 0 , i = 1, . . . , n . (I.2.3)

These are the differential equations which describe the actual motion of the system, they are called
Euler-Lagrange equations. If the lagrangian of a given mechanical system is known, then these
equations establish a relation between accelerations, velocities and coordinates, i.e. they are nothing
else but the equations of motion of this system. From the mathematical point of view, equations
(I.2.3) constitute a system of n differential equations of the second order for n unknown functions
qi(t). The general solution of such a system contains 2n arbitrary integration constants. For their
complete determination one needs to specify initial values, which characterise the system at a given
moment of time, for instance, initial coordinates and velocities.

On comment is in order. It is clear that equations of motion are unchanged if we add to a lagrangian
a total time derivative of a function which depends on the coordinates and time only:

L→ L+
d

dt
R(q, t) . (I.2.4)

Indeed, the change of the action under the variation will be

δS → δS′ = δS +

∫ t2

t1

dt
d

dt
δR(q, t) = δS +

∂R

∂qi
δqi|t=t2t=t1 .

Since in deriving the equations of motion the variation is assumed to vanish at the initial and final
moments of time, we see that δS′ = δS and the equations of motion are unchanged. The fact that
modification (I.2.4) of the of lagrangian leaves the equations of motion untouched can be, of course,
verified by a direct calculation. Denote the addition to the original lagrangian as

∆L =
dR(q, t)

dt
=
∂R

∂qj
q̇j +

∂R

∂t
.
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Then the contribution to the equations of motion caused by ∆L will be

d

dt

∂∆L

∂q̇i
− ∂∆L

∂qi
=

d

dt

∂R

∂qi
−
(

∂2R

∂qi∂qj
q̇j +

∂R

∂qi∂t

)

=

(
∂2R

∂qi∂qj
q̇j +

∂R

∂qi∂t

)
−
(

∂2R

∂qi∂qj
q̇j +

∂R

∂qi∂t

)
= 0 .

Before we proceed, let us fix some terminology. The quantities

pi =
∂L

∂q̇i
, p = (p1, . . . , pn) ,

are called canonical momenta. It is not always so that pi = m~vi; in general the expression for
the canonical momentum corresponding to the generalised velocity q̇i depends on the form of the
concrete lagrangian. The quantities

Fi =
∂L

∂qi

are called generalised forces. Finally, if a given lagrangian does not depend on a particular generalised
coordinate qi, then the canonical momentum corresponding to this coordinate is conserved (integral
of motion). Indeed, from (I.2.3) we get for this coordinate

d

dt

∂L

∂q̇i
=
dpi
dt

= 0 ,
∂L

∂qi
= 0 . (I.2.5)

Such a coordinate is called cyclic.

2.1.2 Lagrangian for a system of N particles

Consider a system of N particles which interact by means of internal conservative forces only and
denote by U(~r1, . . . , ~rN ) the corresponding potential. Consider the following lagrangian

L = T − U =

N∑

i=1

mi~v
2
i

2
− U(~r1, . . . , ~rN ) .

Let us show that the Euler-Lagrange equations that follow from this lagrangian coincide with New-
ton’s equations. The Euler-Lagrange equations are

0 =
d

dt

∂L

∂~vi
− ∂L

∂~ri
=

d

dt
mi~vi +

∂U

∂~ri
, i = 1, . . . , N .

Since ~vi = ~̇ri, the expression above is

mi~̈ri = −∂U
∂~ri

= ~Fi ,

that is we obtain the system of Newton’s equations.

As was already mentioned, to describe a system we can use any kind of generalised coordinates, not
necessarily the cartesian ones. If, for instance, ~ri = ~ri(qa), ~̇ri = ~̇ri(qa), where a = 1, . . . , n, then

L =
1

2

N∑

i=1

mi~̇r
2
i (qa)− U(~ri(q)) =

1

2

n∑

a=1

n∑

b=1

gab(q)q̇aq̇b − U(q) . (I.2.6)

38



with

gab =

N∑

i=1

mi
∂~ri
∂qa
· ∂~ri
∂qb

.

The Euler-Lagrange equations are derived in the same way as before with respect to the generalised
coordinates.

Example. Lagrangian for the relative motion in the two-body problem. We write the lagrangian in
the polar coordinate system, namely,

L = T − U =
µ

2
(ṙ2 + r2ϕ̇2)− U(r) .

The coordinate ϕ does not enter the lagrangian and, therefore, it is cyclic. The corresponding
canonical momentum, which is

pϕ =
∂L

∂ϕ̇
= µr2ϕ̇ ,

is nothing else but the value of the conserved angular momentum. The Euler-Lagrange equations
are

d

dt
pϕ =

d

dt
(µr2ϕ̇) = 0 ,

d

dt

∂L

∂ṙ
− ∂L

∂r
= µr̈ − µrϕ̇2 +

∂U

∂r
= 0 .

In particular, the Lagrangian for the relative motion in the Kepler problem will be

LKepler =
µ

2
(ṙ2 + r2ϕ̇2) +

k

r
, k > 0 .

Often one has to deal with mechanical systems in which interactions between bodies (point particles)
have a character of constraints, i.e. restrictions imposed on the mutual positions of bodies. In
practice such constraints are realised by fasting the bodies by means of various rods, threads, hinges,
etc. This brings a new factor, namely, the motion of the bodies is accompanied by friction at places
where the bodies are in contact, so that, strictly speaking the problem goes beyond the framework
of mechanics. However, in many cases friction appears to be so small that it can be completely
neglected. If, in addition, one can neglect the masses of fasting elements, then the role of the latter
simply reduced to diminishing the number of degrees of freedom n of a system (in comparison to
3N). To determine the motion of such a system one can use the lagrangian (I.2.6) with the number
of independent generalised coordinates equal to the number of actual degrees of freedom.

Example. Mathematical pendulum. Consider a mathematical pendulum. It moves in such a way
that x2 + y2 = l2. We draw the coordinate axes as in Fig. 2.1 and write the coordinates x and y
via the angle ϕ

x = l sinϕ , y = l cosϕ .

Write the Lagrangian2

L = T − U =
1

2
m~v2 − U , U = −mgy .

Thus,

L =
1

2
m(ẋ2 + ẏ2) +mgy

2Note that with the choice of the coordinate system as in Fig. 2.1, the potential decreases towards the Earth
surface, while y increases. Therefore, the force acting on m is also directed towards the Earth surface, as it should be.
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=
m

2
l2(cosϕ2ϕ̇2 + sinϕ2ϕ̇2) +mgl cosϕ ,

where we have used that
ẋ = lϕ̇ cosϕ , ẏ = −lϕ̇ sinϕ .

Thus, we finally get

L =
m

2
l2ϕ̇2 +mgl cosϕ .

y

x

l

m

'

Figure 2.1: Mathematical Pendulum.

The Euler-Lagrange equation is

d

dt

∂L

∂ϕ̇
− ∂L

∂ϕ
= ml2ϕ̈+mgl sinϕ = 0 ,

so that the pendulum moves according to the
one-dimensional “sine-Gordon" equation

ϕ̈+
g

l
sinϕ = 0 .

This equation can be solved analytically for
small oscillations where sinϕ ≈ ϕ, namely,

ϕ̈+ ω2ϕ = 0 , ω2 =
g

l

and ϕ = A cosωt+B sinωt.

Example. Pendulum with a movable suspension point. Consider a mathematical pendulum with a
movable suspension point. We introduce the generalised coordinates q1 = x(t) and q2 = ϕ(t). The
Lagrangian L = L(x, ẋ, ϕ, ϕ̇) = T − U . To find the kinetic energy

T =
1

2
m1~v

2
1 +

1

2
m2~v

2
2 ,

we first obtain

~v1 = ~̇r1 , ~r1 = x(t)~ex , ~̇r1 = ẋ~ex ,

~v2 = ~̇r2 , ~r2 = ~r1 + l sinϕ~ex + l cosϕ~ey , ~̇r2 = (ẋ+ lϕ̇ cosϕ)~ex + (−lϕ̇ sinϕ)~ey .

Thus,

T =
1

2
m1ẋ

2 +
1

2
m2

(
(ẋ+ lϕ̇ cosϕ)2 + l2ϕ̇2 sin2 ϕ

)

=
1

2
(m1 +m2)ẋ2 +

1

2
m2l

2ϕ̇2 +m2lẋϕ̇ cosϕ .

The potential energy is U = −m2gl cosϕ. The Lagrangian is then

L(x, ẋ, ϕ, ϕ̇) =
1

2
(m1 +m2)ẋ2 +

1

2
m2l

2ϕ̇2 +m2lẋϕ̇ cosϕ+m2gl cosϕ .

The coordinate x is cyclic. The Euler-Lagrange equations are

d

dt

∂L

∂ẋ
− ∂L

∂x
=

d

dt

[
(m1 +m2)ẋ+m2l cosϕϕ̇

]

= (m1 +m2)ẍ+m2lϕ̈ cosϕ−m2lϕ̇
2 sinϕ = 0 ,
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d

dt

∂L

∂ϕ̇
− ∂L

∂ϕ
=

d

dt

[
m2l

2ϕ̇+m2lẋ cosϕ
]

+m2lẋϕ̇ sinϕ+m2gl sinϕ

= m2l
2ϕ̈+m2lẍ cosϕ+m2gl sinϕ = 0 .

Thus, we obtained a system of coupled differential equations

(m1 +m2)ẍ+m2l cosϕϕ̈−m2l sinϕϕ̇
2 = 0 ,

lϕ̈+ cosϕẍ+ g sinϕ = 0 .

For small oscillations sinϕ ≈ ϕ, cosϕ ≈ 1 and the system is approximated as

(m1 +m2)ẍ+m2lϕ̈ = 0 ,

lϕ̈+ ẍ+ gϕ = 0 .
(I.2.7)

From the second equation ẍ = −(lϕ̈+ gϕ) and substituting this result in the first, we find

−(m1 +m2)(lϕ̈+ gϕ) +m2lϕ̈ = 0

y

x

l'

·~r1O

~r2

m2

m1

x

Figure 2.2: Pendulum with a movable suspension
point.

or

ϕ̈+ ω2ϕ = 0 , ω2 =
m1 +m2

m1

g

l

and
ϕ = A cosωt+B sinωt .

As to x, from the first equation in (I.2.7) we
have

ẍ = − m2l

m1 +m2
ϕ̈ .

Integrating this equation twice we find

x = − m2l

m1 +m2
ϕ+A′t+B′ .

Thus, we have obtained a generals solution for small oscillations which depends on 4 integration
constants A,B,A′, B′.

One can also make a progress towards an exact solution. Since x is cyclic, the momentum px is
conserved, i.e.

px = (m1 +m2)ẋ+m2`ϕ̇ cosϕ = A′ = const

Integrating this equation, we get

(m1 +m2)x+m2` sinϕ = A′t+B′ .

By properly choosing an inertial frame we can always adjust A′ = 0. The cartesian coordinates of
the mass m2 are

x2 = x+ l sinϕ = B′ − m2l

m1 +m2
sinϕ+ l sinϕ = B′ +

m1l

m1 +m2
sinϕ ,

y2 = l cosϕ .
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From here we deduce that the trajectory of the mass m2 on the xy-plane is an ellipse

(x−B′)2

a2
+
y2

b2
= 1 ,

where
a =

m1l

m1 +m2
, b = l .

With the use of ẋ = − m2l
m1+m2

ϕ̇ cosϕ, the total energy E = T + U reads as

E =
m2l

2ϕ̇2

2

(
1− m2

m1 +m2
cos2 ϕ

)
−m2gl cosϕ .

Separating the variables, we find the law of motion for the angle ϕ

t = l

√
m2

2(m1 +m2)

∫ √
m1 +m2 sin2 ϕ

E +m2gl cosϕ
dϕ .

2.2 Symmetries and conservation laws

We begin our discussion with Noether’s theorem which is one of the most fundamental and general
statements concerning the behaviour of dynamical systems. It relates symmetries of a theory with
its conservation laws.

2.2.1 Noether’s theorem

Noether’s theorem. For any continuous symmetry of the action there exists a quantity which
is conserved due to the Euler-Lagrange equations. In other words, symmetries of the action yield
conservation laws.

Below we explain the notion of symmetry and provide a proof of Noether’s theorem. Let an in-
finitezimal transformation qi → qi + δqi depending on a continuous parameter(s) be such that the
variation of the Lagrangian takes the form3 of a total time derivative of some function F :

δL =
dF

dt
.

Transformation δqi is called a symmetry of the action.

Proof. Now comes the proof of Noether’s theorem. Suppose that q′i = qi + δqi is a symmetry of the
action. Then4

δL =
∂L

∂qi
δqi +

∂L

∂q̇i
δq̇i =

∂L

∂qi
δqi +

∂L

∂q̇i

d

dt
δqi =

dF

dt
.

By the Euler-Lagrange equations, we get

δL =
d

dt

( ∂L
∂q̇i

)
δqi +

∂L

∂q̇i

d

dt
δqi =

dF

dt
.

This gives

δL =
d

dt

( ∂L
∂q̇i

δqi

)
=
dF

dt
.

3Without usage of equations of motion! A variation of the lagrangian computed on the equations of motion is
always a total derivative!

4Here we start to use the convention adopted in the literature that δq̇ ≡ δ̇q = d
dt
δq.
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As the result, we find the quantity which is conserved in time

dJ

dt
≡ d

dt

( ∂L
∂q̇i

δqi − F
)

= 0 .

This quantity

J =
∂L

∂q̇i
δqi − F

is called Noether’s charge. As we have just shown, Noether’s charge is a conserved quantity. Now
we consider some important symmetries and corresponding conservation laws. Using the definition
of the canonical momentum the expression for the conserved charge can also be written as

J = piδqi − F .

This completes the proof of Noether’s theorem. �

2.2.2 Fundamental conservation laws

The most important conservation laws include conservation of energy, momentum and angular mo-
mentum. As such, they reflect the fundamental symmetry properties of the space-time. Later on we
will study another fundamental conservation law – conservation of electric charge.

1) Conservation of energy. Energy conservation is related to homogeneity of time, which shows
up in the freedom of arbitrary choosing the reference point of time (one can perform an experiment
today or after several years but its result will always be the same provided one use the same initial
conditions).

We derive now the conservation law of energy in the framework of Noether’s theorem. Suppose we
make an infinitesimal time displacement δt = ε, where ε is a small but otherwise arbitrary constant.
The response of the lagrangian on this displacement is

δL =
dL

dt
δt =

dL

dt
ε .

Thus, the displacement δt = ε is the symmetry because the lagrangian changed by the total derivative
of the function F = Lε. On the other hand,

δL =
∂L

∂qi
δqi +

∂L

∂q̇i
δq̇i +

∂L

∂t
δt =

d

dt

(
∂L

∂q̇i

)
δqi +

∂L

∂q̇i

d

dt
δqi =

d

dt

(
∂L

∂q̇i
δqi

)
,

where we have used the Euler-Lagrange equations and assumed that L does not explicitly depend on
time. Thus, we have

d

dt

(
∂L

∂q̇i
δqi

)
=
dL

dt
ε .

Obviously, δqi = q̇iε and the above equation reduces to

ε
d

dt

(
∂L

∂q̇i
q̇i − L

)
= 0 .

Omitting ε and recalling that ∂L
∂q̇i

= pi, we recover the corresponding conserved quantity, which we
denote as H,

H = piq̇i − L ,
dH

dt
= 0 .
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The quantity H is called energy of the system. We stress that conservation of energy tales place
not only for closed systems but also for systems in a constant, i.e. time-independent, field. The
only condition that was needed to prove conservation of energy was the absence of explicit time
dependence of the lagrangian, the property that holds in a constant external field. Sometimes
mechanical systems for which the energy is conserved are called conservative. The formula

H =
∂L

∂q̇i
q̇i − L

relating L with H is called the Legendre transformation. For a mechanical system in cartesian
coordinates ~pi = m~vi and

H =

N∑

i=1

mi~̇r
2
i − L =

N∑

i=1

mi~̇r
2
i −

(
1

2

N∑

i=1

mi~̇r
2
i − U(r)

)
= T + U ≡ E ,

justifying that H coincides with the definition of energy we use in Newtonian’s mechanics.

2) Momentum conservation. Momentum conservation is related to homogeneity of space. Due to
this homogeneity the mechanical properties of a closed system do not change under any parallel
translation of the system as a whole. This means that the lagrangian describing this system must
be invariant under a shift of radius-vectors ~ri → ~ri + ~ε, where ~ε is an arbitrary constant vector.
This means that δ~ri = ~ε is the symmetry and, according to Noether’s theorem, we have a conserved
current

J = ~ε ·
N∑

i=1

~pi = ~ε · ~P , ~P =

N∑

i=1

~pi ,

where ~P is the total momentum. Since ~ε is arbitrary and constant, conservation of the J implies
conservation of the components of the total momentum

d~P

dt
= 0 .

The other way around, assuming the conservation law of the total momentum and summing up the
Euler-Lagrange equations, we get

0 =
d

dt

N∑

i=1

∂L

∂~vi
−

N∑

i=1

∂L

∂~ri
=

d

dt

N∑

i=1

pi −
N∑

i=1

∂L

∂~ri
= −

N∑

i=1

∂L

∂~ri
.

But ∂L
∂~ri

= − ∂U
∂~ri

= ~Fi is the force acting on i’th particle. Thus, if the total momentum is conserved,
then the sum of forces acting on all particles of the closed system equals to zero

N∑

i=1

~Fi = 0 .

In particular, for a system of two particles the last relation turns into the third Newton’s law:
~F1 + ~F2 = 0, i.e. the force acting on the first particle from the second one is equal in strength but
appositely directed to the force with which the first particle acts on the second (actio = reactio).

Note that if the motion is described by generalised coordinates, individual generalised momenta pi
will be conserved provided the corresponding lagrangian is invariant under constant shifts qi → qi+ε.
Indeed, in this case δqi = ε is the symmetry, which implies that the action does not depend on the
coordinate qi, i.e. qi is cyclic and, according to (I.2.5), pi is conserved.
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A lagrangian might be invariant under constant shifts only up to a total derivative, which also leads
to an existence of the conservation law involving a non-trivial function F , as in the example below.
Example. Particle in a constant gravitational field. Consider the lagrangian

L =
m

2
ż2 −mgz

and a shift z → z + ε, i.e. δz = ε. We get δL = −mgε = d
dt (−mgεt), so that F = −mgtε. Thus,

according to Noether’s theorem, the quantity

J = mżδz − F = (mż +mgt)ε

is conserved. This is a conservation law of the initial velocity ż + gt = const.

3) Angular momentum conservation. Conservation of angular momentum is related to isotropy
of space. Isotropy means that mechanical properties of a closed system do not change under any
rotation of the system as a whole in space. From the point of view of the lagrangian dynamics, this
means that the lagrangian of the system is invariant under rotations.

Let us first discuss rotations in more detail. Rotations are linear coordinate transformations which
preserve the origin and keep the modulus |~r| of a radius-vector ~r ∈ R3 invariant. Let

~r =

3∑

a=1

xa~ea = x~ex + y~ey + z~ez .

Any linear transformation can be represented by a 3× 3 matrix R = ||Rab||, a, b = 1, . . . , 3. Such a
transformation acts on coordinates as

x′a =

3∑

b=1

Rabxb ,

or in the matrix form

~r′ = R~r

The length squared of the transformed vector ~r′ is

~r′t~r′ =

3∑

a=1

x′ax
′
a =

3∑

a=1

3∑

b=1

3∑

c=1

RabxbRacxc =

3∑

b=1

3∑

c=1

xb

(
3∑

a=1

(Rt)baRac

)
xc ,

where t stands for transposition. We require the preservation of length, i.e. ~r′t~r′ = ~rt~r, which
imposes on R the following relation

3∑

a=1

(Rt)baRac = δbc .

The last relation written in the matrix form is

RtR = 1 . (I.2.8)

The matrices satisfying the condition (I.2.8) are called orthogonal. For such matrices we have

det(RtR) = (detR)2 ⇒ detR = ±1 .

Matrices which represent rotations are those which have detR = 1, such matrices are called special.
All orthogonal matrices as well as orthogonal matrices with detR = 1 constitute a group.

Definition. A group G is a set equipped with a binary operation ·, called product, that combines
any two elements to form a third element in such a way that four conditions called group axioms
are satisfied. The group axioms are namely closure, associativity, identity and invertibility.

45



y

z

x

y

z

x

y

z

x

'z 'y

'x

Figure 2.3: Rotations of the radius vector around x-, y- and z-axes. If a corkscrew downwards along
one of the axes, then the direction of rotation of his handle driven by the right hand coincides with
the direction of the (positive) rotation angle around this axis.

(a) Closure: ∀ g1, g2 ∈ G → g1 · g2 ∈ G;
(b) Associativity of the product: (g1 · g2) · g3 = g1 · (g2 · g3);

(c) Identity : ∃ e, such that e · g = g · e = g;

(d) Inverse: for any g ∈ G ∃ the inverse g−1 ∈ G such that g · g−1 = g−1 · g = e.

Very often the sign of the product is omitted, so instead of g1 · g2 one simply writes g1g2.

The fact that orthogonal matrices form a group is easily verified. The product · is given by the usual
matrix product. Let us show that if R1 and R2 are orthogonal, then their matrix product R1R2 is
also orthogonal. We have

(R1R2)t(R1R2) = Rt2R
t
1R1R2 = Rt2R2 = 1 .

Further, the matrix product is associative and the identity e is given by the identity matrix 1.
Finally, any orthogonal matrix is invertible and its inverse is an orthogonal matrix. Indeed, from
RtR = 1 we get Rt = R−1. Applying transposition to RR−1 = 1, we obtain (R−1)tRt = 1, where
substituting Rt = R−1, we find (R−1)tR−1 = 1. If R1 and R2 have unit determinant, then their
product R1R2 also has a unit determinant. Matrices with determinant equal to −1 do not form a
group.

The groups of orthogonal matrices and orthogonal matrices with unit determinant have the following
notation

O(3)− the group of orthogonal matrices ,

SO(3)− the group of special orthogonal matrices .

Now we want to understand how parametrise special orthogonal matrices by rotation angles.
Choosing the complex coordinates in the xy-plane, see Fig. 2.4, we write the result of rotation of a
vector ~r = (x, y, z) around z-axis by angle ϕz in the complex form as

x′ + iy′ = (x+ iy)eiϕz = rei(φ+ϕz) = (x+ iy)(cosϕz + i sinϕz)

= x cosϕz − y sinϕz + i(x sinϕz + y cosϕz) ,

z′ = z .
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In the matrix form we have



x′

y′

z′


 =




cosϕz − sinϕz 0
sinϕz cosϕz 0

0 0 1






x
y
z


 ⇒ Rz =




cosϕz − sinϕz 0
sinϕz cosϕz 0

0 0 1


 .

Analogously, introducing complex coordinates in the zx-plane, for rotation around y-axis we find

z′ + ix′ = (z + ix)eiϕy = rei(φ+ϕy) = (z + ix)(cosϕy + i sinϕy)

= z cosϕy − x sinϕy + i(z sinϕy + x cosϕy) ,

y′ = y .

In the matrix form this yields



x′

y′

z′


 =




cosϕy 0 sinϕy
0 1 0

− sinϕy 0 cosϕy






x
y
z


 ⇒ Ry =




cosϕy 0 sinϕy
0 1 0

− sinϕy 0 cosϕy


 .

Finally, introducing complex coordinates in the yz-plane, for rotation around x-axis we find

y′ + iz′ = (y + iz)eiϕx = rei(φ+ϕx) = (y + iz)(cosϕx + i sinϕx)

= y cosϕx − z sinϕx + i(y sinϕx + z cosϕx) ,

x′ = x .

The matrix realisation of these formulae is



x′

y′

z′


 =




1 0 0
0 cosϕx − sinϕx
0 sinϕx cosϕx






x
y
z


 ⇒ Rx =




1 0 0
0 cosϕx − sinϕx
0 sinϕx cosϕx


 .

One can check that all three matrices Rx, Ry, Rz are orthogonal and have unit determinant. They
represent rotations around x-, y- and z-axes on a finite angle.

Consider now an infinitesimal rotation, i.e. a rotation on a small angle δϕ. Then in the limit
δϕ→ 0 the matrices Rx, Ry, Rz turn to

Rx(δϕ) ≈ 1 + δϕA1 , A1 =




0 0 0
0 0 −1
0 1 0


 ,

Ry(δϕ) ≈ 1 + δϕA2 , A2 =




0 0 1
0 0 0
−1 0 0


 ,

Rz(δϕ) ≈ 1 + δϕA3 , A3 =




0 −1 0
1 0 0
0 0 0


 .

The matrices Aa are skew-symmetric, Aa = −Ata. Moreover, they form a basis in the space of all
3 × 3 real skew-symmetric matrices, i.e. any 3 × 3 skew-symmetric matrix A, A = −At, can be
written as

A ≡ A(~a) =




0 −a3 a2

a3 0 −a1

−a2 a1 0


 = a1A1 + a2A2 + a3A3 ,
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Figure 2.4: Rotation around an arbitrary axis ~n by an angle δϕ.

The entries of these three matrices can be encoded in one formula

(Aa)bc = −εabc .

Infinitesimally, rotation of ~r is ~r → ~r′ = ~r + δr, where

around x : δ~r = δϕA1~r = δϕ(y~ez − z~ey) = δϕ~ex × ~r ,
around y : δ~r = δϕA2~r = δϕ(z~ex − x~ez) = δϕ~ey × ~r ,
around z : δ~r = δϕA3~r = δϕ(x~ey − y~ex) = δϕ~ez × ~r .

(I.2.9)

It is not difficult to write the displacement δr for an infinitesimal rotation of ~r on an angle δϕ around
arbitrary direction specifies by a unit vector ~n. Introducing an angle θ between ~n and ~r, we have

|δ~r| = r sin θδϕ .

The direction of vector δ~r is perpendicular to the plane passing through δ~ϕ ≡ δϕ~n and ~r. Therefore,
we have

δ~r = δ~ϕ× ~r . (I.2.10)

The formulae (I.2.9) are particular cases of this general formula.

Quite remarkably, the rotation matrices Rx(ϕ), Ry(ϕ) and Rx(ϕ) on a finite angle ϕ can be
uniquely restored via the infinitesimal matrices Aa. Namely the following formulae hold

eϕA1 =




1 0 0
0 cosϕ − sinϕ
0 sinϕ cosϕ


 = Rx(ϕ) ,

eϕA2 =




cosϕ 0 sinϕ
0 1 0

− sinϕ 0 cosϕ


 = Ry(ϕ) ,

eϕA3 =




cosϕ − sinϕ 0
sinϕ cosϕ 0

0 0 1


 = Rz(ϕ) .

(I.2.11)
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These formulae will be proved in Tutorial VI.

We also point out that

∂eϕA1

∂ϕ

∣∣∣
ϕ=0

= A1 ,
∂eϕA2

∂ϕ

∣∣∣
ϕ=0

= A2 ,
∂eϕA3

∂ϕ

∣∣∣
ϕ=0

= A3 .

This property justifies to call A1, A2, A3 the infinitesimal generators of the rotation group. It is not
difficult to prove that a rotation on an angle ϕ around a unit vector ~n is given by

R(ϕ~n) = eϕ~n·
~A .

Here the 3× 3 matrix ~n · ~A in the exponent has the matrix elements

(~n · ~A)ab = −ncεcab = −εabcnc .

Explicit computation reveals that R has the following matrix elelments

Rab(ϕ~n) = cosϕ δab + (1− cosϕ)nanb − sinϕ εabcnc , a, b = 1, . . . 3 . (I.2.12)

Matrix R is orthogonal and it represents an element of the rotation group SO(3). Finally, we mention
one important fact, namely, the tensor εabc is invariant under rotations, i.e.

Raa′Rbb′Rcc′εa′b′c′ = detRεabc = εabc .

Now we turn to the conservation law which arises due to the symmetry of the lagrangian with
respect to simultaneous rotation of all ~ri by an infinitesimal constant angle δϕ around arbitrary
direction ~n

δ~ri = δϕ~n× ~ri , δϕ ≡ ε .
According to Noether’s theorem the following charge is conserved

J = δϕ

N∑

i=1

(~pi, ~n× ~ri) = −δϕ
N∑

i=1

(~pi, ~ri × ~n) = −δϕ
N∑

i=1

(~pi × ~ri, ~n) = δϕ

N∑

i=1

(~ri × ~pi, ~n) .

Since δϕ and ~n are arbitrary, we conclude that the total angular momentum

~L =

N∑

i=1

~ri × ~pi

is conserved.

Since the definition of angular momentum includes ~ri’s, its definition does depend on the choice
of the coordinate origin. Radius-vectors ~ri and ~r′i of the one and the same point but measured
with respect to different coordinate origins are related as ~ri = ~r′i + ~a, where ~a is a constant vector.
Therefore,

~L =

N∑

i=1

~ri × ~pi =

N∑

i=1

~r′i × ~pi + ~a×
N∑

i=1

~pi = ~L′ + ~a× ~P .

As is clear form this formula, the angular momentum does not depend on the choice of the coordinate
origin if and only if the system as a whole is at rest, i.e. ~P = 0. This ambiguity does not influence
conservation of ~L because ~P is conserved.
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Although conservation of all three components of angular momentum (with respect to an arbitrarily
chosen origin of the reference frame) takes place only for a closed system, in a more restricted form
this conservation law can sometimes be applied for systems in an external field. What is conserved
in this case is the projection of the angular momentum on the axis with respect to which this field
is symmetric, so that mechanical properties of the system do not change under any rotation around
this axis. Of course, in such a situation the angular momentum should be defined with respect to
a point (the origin of a reference frame) that lies on the same axis. One of the most important
examples of this kind is provided by a field with the central symmetry, i.e. a field for which the
potential energy depends only on the distance to a definite point (field center) in space. For motion
in such a field the projection of the momentum on any axis passing through the center is conserved.
In other words, the vector ~L is conserved when being defined not with respect to an arbitrary point
in space but with respect to the field center.

This exhausts all additive integrals of motion. Thus, any closed system has 7 such integrals: energy,
3 components of momentum and 3 components of angular momentum. Finally, we note that for all
the symmetry transformations we have considered so far the integration measure dt in the action
did not transform (even for in the case of energy dt→ d(t+ ε) = dt).

2.3 Oscillations

Here we study lagrangian systems that perform small coupled oscillations and show that they fac-
torise into direct product of systems with one degree of freedom. To better appreciate the context
of this discussion, we start with considering an example of coupled pendulums.

2.3.1 Coupled pendulums

Example. Coupled pendulums. Consider a system of two mathematical pendulums of equal length
` and of equal mass m1 = m2 = m connected by a massless spiring with Hook’s constant κ. We
assume that in a state of equilibrium the length of the spring is constant and equals to d. We choose
the angles ϕ1 and ϕ2 as generalised coordinates. Then cartesian coordinates of the masses are

x1 = l sinϕ1 , y1 = l cosϕ1 ,

x2 = d+ l sinϕ2 , y2 = l cosϕ2 .

The kinetic energy is

T =
m1

2
(ẋ2

1 + ẏ2
1) +

m2

2
(ẋ2

2 + ẏ2
2) =

ml2

2
(ϕ̇2

1 + ϕ̇2
2) .

The potential energy comes from two sources: the potential energy Ugr of masses in the gravitational
field of the Earth and the potential energy Uspring stored in the spring. We have

Ugr = −m1gy1 −m2gy2 = −mgl cosϕ1 −mgl cosϕ1 = −mgl(cosϕ1 + cosϕ2) .

To find the energy stored in the spring, we notice that the length of the spring in comparison to its
equilibrium length is x2 − x1 − d and, therefore,

Uspring =
κ

2
(x2 − x1 − d)2 =

κl2

2
(sinϕ1 − sinϕ2)2 .

The lagrangian of the system of coupled oscillators is then

L = T − U =
ml2

2
(ϕ̇2

1 + ϕ̇2
2) +mgl(cosϕ1 + cosϕ2)− κl2

2
(sinϕ1 − sinϕ2)2 .
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x1

x2



Figure 2.5: The upper figure shows coupled pendulums. The lower figure demonstrates characteristic
oscillations of coupled pendulums.

For small oscillations, i.e. when ϕ1 and ϕ2 are small, we approximate cosϕ1,2 ≈ 1 − 1
2ϕ

2
1,2 and

sinϕ1,2 ≈ ϕ1,2 and the lagrangian for small oscillations takes the form

L = T − U =
ml2

2
(ϕ̇2

1 + ϕ̇2
2)− mgl

2
(ϕ2

1 + ϕ2
2)− κl2

2
(ϕ1 − ϕ2)2 , (I.2.13)

where we have omitted an unessential constant term. The Euler-Lagrange equations

d

dt

∂L

ϕ̇1,2
− ∂L

∂ϕ1,2
= 0

are

ml2ϕ̈1 +mglϕ1 + κl2(ϕ1 − ϕ2) = 0 ,

ml2ϕ̈2 +mglϕ2 + κl2(ϕ2 − ϕ1) = 0 .

This is the system of two coupled 2nd order ordinary differential equations which we further brush
up to

ϕ̈1 +
(g
l

+
κ

m

)
ϕ1 −

κ

m
ϕ2 = 0 ,

ϕ̈2 +
(g
l

+
κ

m

)
ϕ2 −

κ

m
ϕ1 = 0 .

(I.2.14)

It is convenient to rewrite this system in the matrix form
(
d2

dt2
+M

)(
ϕ1

ϕ2

)
= 0 , (I.2.15)

where a matrix M is

M =

(
g
l + κ

m − κ
m

− κ
m

g
l + κ

m

)
.

51



We will look for a solution of this system in the form
(
ϕ1

ϕ2

)
=

(
ϕ0

1

ϕ0
2

)
eiωt , ~ϕ0 =

(
ϕ0

1

ϕ0
2

)
,

where ϕ0
1 and ϕ0

2 are constants. Plugging this ansatz into (I.2.15), we obtain the following matrix
equation

M~ϕ0 = ω2~ϕ0 .

This is an eigenvalue problem for the matrixM , where ω2 is an eigenvalue and ~ϕ0 is the correspond-
ing eigenvector. According to the standard procedure, eigenvalues are then found by solving the
characteristic equation, namely,

det(M − ω2
1) = 0 .

In our present case this equation is

det(M − ω2
1) = det

(
g
l + κ

m − ω2 − κ
m

− κ
m

g
l + κ

m − ω2

)

=
1

lm2
(g − lω2)(2κl +m(g − lω2)) = 0 .

Solutions of this equation are

ω2
1 =

g

l
, & ω2

2 =
g

l
+ 2

κ

m
.

These ω’s are called characteristic or eigen frequencies. Now we can determine the eigenvectors. We
obtain

ω2
1 :

(
κ
m − κ

m
− κ
m

κ
m

)(
ϕ0

1

ϕ0
2

)
= 0 ⇒

(
ϕ0

1

ϕ0
2

)
=

1√
2

(
1
1

)
,

ω2
2 :

(
− κ
m − κ

m
− κ
m − κ

m

)(
ϕ0

1

ϕ0
2

)
= 0 ⇒

(
ϕ0

1

ϕ0
2

)
=

1√
2

(
1
−1

)
,

where we have presented the normalised eigenvectors with the norm equal to one. Since the Euler-
Lagrange equations are linear, the general solution is obtained by superposition of oscillations with
characteristic frequencies and it reads as
(
ϕ1

ϕ2

)
=

A√
2

(
1
1

)
eiω1t +

A∗√
2

(
1
1

)
e−iω1t +

B√
2

(
1
−1

)
eiω2t +

B∗√
2

(
1
−1

)
e−iω2t ,

i.e. there are 4 integration constants represented by two complex numbers A and B.

::::::
Special

:::::
cases. There are two special cases.

1) B = B∗ = 0. We have
(
ϕ1

ϕ2

)
=

A√
2

(
1
1

)
eiω1t +

A∗√
2

(
1
1

)
e−iω1t .

For this case, ϕ1 = ϕ2 for any time and ω2
1 = g

l . The spring is not stretched at all, see the lower left
image on Fig. 2.5. The system behaves itself as a single pendulum.
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2) A = A∗ = 0. We have
(
ϕ1

ϕ2

)
= +

B√
2

(
1
−1

)
eiω2t +

B∗√
2

(
1
−1

)
e−iω2t .

For this case, ϕ1 = −ϕ2 for any time and ω2
1 = g

l +2 κ
m . The spring reaches its maximal and minimal

stretch, see the lower right image on Fig. 2.5.

These two special modes are called eigen oscillations. A general motion is an overlapping of these
two modes. Let us now define the so-called normal coordinates

Θ1 = ϕ1 + ϕ2 ,

Θ2 = ϕ1 − ϕ2 ,

so that

ϕ1 =
1

2
(Θ1 + Θ2) ,

ϕ2 =
1

2
(Θ1 −Θ2) .

Adding and subtracting equations (I.2.14), we then rewrite them via normal coordinates as

(1) + (2) : Θ̈1 +
(g
l

+
κ

m

)
Θ1 −

κ

m
Θ1 = 0 ,

(1)− (2) : Θ̈2 +
(g
l

+
κ

m

)
Θ2 +

κ

m
Θ2 = 0 .

Collecting similar terms, we bring the last two equations to the form

Θ̈1 + ω2
1Θ1 = 0 , ω2

1 =
g

l
,

Θ̈2 + ω2
2Θ2 = 0 , ω2

2 =
g

l
+ 2

κ

m
.

Thus, we observe that in the normal coordinates the differential equations decouple and describe two
independent harmonic oscillators with frequencies ω1 and ω2. It remains to see how the lagrangian
(I.2.13) looks in the normal coordinates. We have

L =
ml2

2

(
1

4
(Θ̇1 + Θ̇2)2 +

1

4
(Θ̇1 − Θ̇2)2

)
− mgl

2

(
1

4
(Θ1 + Θ2)2 +

1

4
(Θ1 −Θ2)2

)
− κl2

2
Q2

2 .

Simplifying, we obtain

L =
ml2

4

[
Θ̇2

1 −
g

l
Θ2

1 + Θ̇2
2 −

(g
l

+ 2
κ

m

)
Θ2

2

]
.

Thus, we observe that the original lagrangian factorises in the normal coordinates into the sum
L = L1(Θ1) + L2(Θ2), where

L1 =
ml2

4

(
Θ̇2

1 − ω2
1Θ2

1

)
,

L2 =
ml2

4

(
Θ̇2

1 − ω2
1Θ2

1

)
.

This finishes our considerations of the example of coupled pendulums.
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2.3.2 Oscillations with many degrees of freedom

The theory of free small oscillation is build analogously to the example of coupled oscillator consid-
ered above. Let potential energy U of a system considered as a function of generalised coordinates
qi, i = 1, . . . , n, has minimum at qi = qi0. Introduce small displacements

xi = qi − qi0

and expanding U over xi up to quadratic order, we obtain the potential energy as the following
positively definite quadratic form

U =
1

2

∑

ij

kijxixj ,

where we measure U from its minimum. Coefficients kij can be viewed as symmetric, i.e. kij = kji.
The kinetic energy has in general the following form

T =
1

2

∑

ij

gij(q)q̇iq̇j .

Setting in gij(q) the coordinates qi to qi0 and denoting gij(q0) = mij , we obtain T also as a positive
definite quadratic form

T =
1

2

∑

ij

mij ẋiẋj ,

where the coefficients mij are also regarded as symmetric, mij = mji. Therefore, the lagrangian for
a free system performing small oscillations is

L =
1

2

∑

ij

mij ẋiẋj −
1

2

∑

ij

kijxixj .

The Euler-Lagrange equations are
∑

j

mij ẍj +
∑

j

kijxj = 0 , i = 1, . . . , n . (I.2.16)

This is a system of n homogeneous differential equations with constant coefficients. We look for the
general solution for n functions xj(t) in the form

xj = Aje
iωt , (I.2.17)

where Aj are constant unknowns. Substituting these xj into the differential equations and cancelling
out eiωt, we obtain a system of linear homogeneous algebraic equations for the unknowns Aj , namely,

∑

j

(kij − ω2mij)Aj = 0 , (I.2.18)

or in the matrix form

(k − ω2m)A = 0 , k = ||kij || , m = ||mij || .

For this system to have non-vanishing solutions, the determinant of the matrix k−ω2m must vanish

det(k − ω2m) = 0 .
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This is a characteristic equation of order n with respect to ω2. In general it has n different real
positive roots ω2

α, α = 1, . . . , n. These roots are called eigen or normal frequences. Reality and
positivity of roots can be deduced from the following argument. We multiply equation (I.2.18) by
A∗i and sum over i ∑

ij

A∗i (kij − ω2mij)Aj = 0 ,

from where we express ω2 as

ω2 =

∑
ij A

∗
i kijAj∑

ij A
∗
imijAj

.

Since k and m are real and symmetric matrices, the numerator and denominator are both real,
moreover, positive definiteness of k and m implies that the numerator and denominator are both
positive.

After ω2
α are found, substituting each of them into (I.2.18) we can find the corresponding Aj . If

all the roots of the characteristic equation are different, then the coefficients Ak are proportional to
cofactors (adjuncts) of the matrix k−ω2m, where ω2 is replaced with ω2

α.5 Denoting these cofactors
as ∆αj , we obtain a particular solution of the Euler-Lagrange equations

xj = ∆αjCαe
iωαt ,

where Cα is an arbitrary complex constant. The general solution is then the sum of all particular
solutions. Passing to the real part, we have

xj = Re

{
n∑

α=1

∆αjCαe
iωαt

}
=

n∑

α=1

∆αjΘα , (I.2.19)

where we introduced

Θα = Re
{
Cαe

iωαt
}
.

Therefore, motion of each of the coordinates in time represents an overlaying of n simple periodic
oscillations Θ1, . . . ,Θn with arbitrary amplitudes and phases but with definite frequencies. The
quantities Θ1, . . . ,Θn can be conveniently taken as new generalised coordinates, these new coordi-
nates are precisely the normal coordinates. From their definition it follows that they satisfy

Θ̈α + ω2
αΘα = 0 ,

i.e. in the normal coordinates the equations of motion factorise into n independent equations. In
other words, normal oscillations are fully independent.

5For a symmetric matrix ∆αj = ∆jα. The proof that Ak = ∆αk up a an arbitrary simultaneous rescaling of all Ak
goes as follows. Assume that ω does not coincide with any of the roots ωα, α = 1, . . . , n. Then the matrix k − ω2m
is invertible and by the general rule of computing the inverse via its cofactors ∆ij(ω) we have

(k − ω2m)−1
ik =

∆ki(ω)

∆(ω)
, ∆(ω) = det(k − ω2m) .

Thus, with Einstein’s convention for summation of indices,

(k − ω2m)ik(k − ω2m)−1
kj = (k − ω2m)ik

∆jk(ω)

∆(ω)
= δij ,

or
(k − ω2m)ik∆jk(ω) = ∆(ω)δij ∀ i, j .

Sending here ω → ωα and taking into account that ∆(ωα) = 0, we obtain that (k − ω2
αm)ik∆jk(ωα) = 0 for any i

and j. Taking further j = α we obtain the proof of the statement.
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It follows from this discussion that the lagrangian expressed via normal coordinates turns into a
sum of expressions, each of which corresponds to one-dimensional oscillations with frequency ωα
and, therefore, it has the form

L =
∑

α

mα

2

(
Θ̇2
α − ω2

αΘ2
α

)
,

where mα are positive constants. From the mathematical point of view this means that transforma-
tion (I.2.19) diagonalises both quadratic forms corresponding to the kinetic and potential energy.

Usually, normal coordinates are chosen in such a way that the coefficients of velocities squared in the
lagrangian are equal to 1/2. For this it is enough to define the formal coordinates as Qα =

√
mαΘα,

so that
L =

∑

α

1

2

(
Q̇2
α − ω2

αQ
2
α

)
.

If there are multiple (degenerate) frequencies, then the number of the normal coordinates corre-
sponding to each degenerate frequency coincides with the order of degeneration. However, the
choice of these normal coordinates is not unique. Since normal coordinates enter in the kinetic and
potential energy (with equal ωα) enter as equally transformed quantities

∑
Q̇2
α and

∑
Q2
α, they can

be simultaneously transformed by any transformation which leaves the sum of squares invariant.

Finally, we note that the case of a degenerate matrix k defining the potential energy will be considered
in the next subsection and in Tutorial VII.

2.3.3 Periodic chain of coupled oscillators6

As another application of the techniques discussed above we consider a linear chain of coupled oscil-
lators. This picture of a linear chain of coupled oscillators and its three-dimensional generalisation
is used in solid state physics to model the vibrational motion of atoms in a solid. The masses rep-
resent the atomic nuclei that make up the solid and the spacing between the masses is the atomic
separation. The “springs" coupling the masses represent a harmonic approximation to the forces
binding the nuclei into the solid. In the context of applications to solid state physics the normal
modes are identified with phonons. After incorporating quantum mechanics, this phonon picture of
vibrational modes of a solid is used to describe thermal conductivity, specific heat, propagation of
sound, and other properties of the solid.

In fact, here we consider a chain of oscillators with periodic boundary conditions. These boundary
conditions will be bring a new complication, namely, the quadratic form defining the potential energy
appears to be degenerate, and we have to modify out treatment of normal modes to account for this
feature.

Example. Periodic linear chain of oscillators coupled via springs. We consider N ∈ 2N particles of
equal mass m coupled by springs with equal Hooke’s constant κ and impose on generalised coordi-
nates the periodicity condition qN+1 = q1. The generalised coordinates are introduced as displace-
ments

xi = qi − (i− 1)d .

The lagrangian is

L = T − U =
m

2

N∑

i=1

ẋ2
i −

κ

2

N∑

i=1

(xi+1 − xi)2 =
1

2

∑

ij

mij ẋiẋj −
1

2

∑

ij

kijxixj .

6This subsection is optional.
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where mij = mδij and

||kij || = κ ·




2 −1 0 . . . 0 −1
−1 2 −1 0 . . . 0

0 −1
. . . . . . . . .

...
...

. . . . . . . . . −1 0
0 . . . 0 −1 2 −1
−1 0 . . . 0 −1 2




.

The Euler-Lagrange equations are

mẍi +
∑

j

kijxj = 0 , i = 1, . . . , N . (I.2.20)

!n/!N/2

Figure 2.6: Normal modes.

Before we proceed with finding their general so-
lution, we note that the matrix k is degenerate,
det k = 0, and it has a null vector

A(0) =




1
1
...
1


 ,

that is kA(0) = 0. The presence of the null
vector leads to an existence of a special solution
of (I.2.20), namely, the solution which is a vector
x(0) obeying two conditions

ẍ = 0 , kx = 0 .

A general solution of these conditions is then

x(0) = (a+ bt)A(0) , (I.2.21)

where a, b ∈ R are two real arbitrary constants. This special solution does not have an oscillating
character, rather it describes a linear motion with a constant velocity.

To find other solutions of (I.2.20), we employ (I.2.17). The eigenvectors satisfy

N∑

k=1

(kjk −mω2δjk)Ak = 0 .

To solve this equation, we consider an ansatz Ak = eikp with p = const. Then for a fixed index j

N∑

k=1

kjkAk = κ(−ei(j−1)p + 2eijp − ei(j+1)p)

= κeijp(2− e−ip − eip) = 2κAj(1− cos p) = 4κAj sin2 p

2
.

Thus,

N∑

k=1

(kjk −mω2δjk)Ak =
(

4k sin2 p

2
−mω2

)
Aj = 0
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from where we find

ω2
p =

4κ

m
sin2 p

2
.

In general, the dependence of frequency ω on the wave number n (or the phonon momentum p) is
called dispersion relation. Now we have to take into account the boundary condition xN+1 = x1,
i.e. AN+1 = A1 which results into

ei(N+1)p = eip ⇒ eiNp = 1 ⇒ p =
2πn

N
, n ∈ Z .

Thus,

A
(n)
j = e

2πijn
N , ω2

n =
4κ

m
sin2 πn

N
,

so that

ωn =

√
4κ

m

∣∣∣ sin πn
N

∣∣∣ .

It is clear that shifting n→ n+N does not give any new A because A(n)
j = A

(n+N)
j and it does not

change ωn : ωn+N = ωn. Therefore, we can restrict n to lie in the interval

−N
2
≤ n ≤ N

2
− 1 , (I.2.22)

where we recall that according to our assumption N is even. Thus, a particular solution labeled by
n from (I.2.22)

x
(n)
j (t) = Re

[
Cne

2πijn
N eiωnt

]
. (I.2.23)

For n = 0 we see that ω0 = 0 and the corresponding constant solution should be replaced by a more
general solution x(0)

j given by (I.2.21). The general solution is then the sum of particular solutions7

xj(t) =
2√
N

N/2−1∑

n=−N/2
n 6=0

Re
[
Cne

2πijn
N eiωnt

]
+

1√
N
x

(0)
j (t) . (I.2.24)

Our next goal will be to represent this solution as a superposition of the normal modes. To this end,
we consider two terms in the above corresponding to n 6= −N/2 and −n and manipulate it in the
following way

2Re
[
Cne

2πijn
N eiωnt

]
+ 2Re

[
C−ne

− 2πijn
N eiωnt

]

= Cne
2πijn
N eiωnt + C∗ne

− 2πijn
N e−iωnt + C−ne

− 2πijn
N eiωnt + C∗−ne

2πijn
N e−iωnt

= e
2πijn
N Θn(t) + e−

2πijn
N Θ−n(t) ,

where we have introduced the normal modes Θn

Θn(t) = Cne
iωnt + C∗−ne

−iωnt ,

Θ−n(t) = C∗ne
−iωnt + C−ne

iωnt .

By construction, we see that these modes obey the following reality condition

Θ∗n = Θ−n . (I.2.25)
7The overall normalisation 1/

√
N is introduced for further convenience.
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The term in the sum n = −N/2 requires a separate treatment. We have

2Re
[
C−N/2e

−πijeiωN/2t
]

= (−1)j
(
C−N/2e

iωN/2t + C∗−N/2e
−iωN/2t

)
= eiπjΘN/2,j + e−iπjΘ−N/2,j ,

where we have introduced the components of the modes QN/2 and Q−N/2

ΘN/2 ≡ 1

2

(
C−N/2e

iωN/2t + C∗−N/2e
−iωN/2t

)
,

Θ−N/2 ≡ 1

2

(
C−N/2e

iωN/2t + C∗−N/2e
−iωN/2t

)
.

Clearly, the modes ΘN/2 and Θ−N/2 are both real and equal to each other

Θ∗N/2 = ΘN/2 = Θ−N/2 = Θ∗−N/2 . (I.2.26)

Finally, introducing a real mode Θ0(t) = x(0)(t), we write solution (I.2.24) as an expansion over
normal modes

xj(t) =
1√
N

N/2∑

n=−N/2
e

2πijn
N Θn(t) . (I.2.27)

In such a form reality of xj follows from the reality conditions (I.2.25) and (I.2.26).

Let us count the number of integration constants. There are two real constants in Θ0 and, since
C−N/2 is complex, ΘN/2 also depends on two real constants. The rest of independent modes is
delivered by Θn with n = 1, . . . , N/2− 1, each of Θn depends on 4 real constants (two complex Cn
and C∗n). Thus, the total number of real integration constants is

2 + 2 + 4(N/2− 1) = 2N ,

as it should be for a system with N degrees of freedom.

Let us now perform an exercise of rewriting the original lagrangian in terms of the normal modes.
To this end, we will use formula (I.2.27) which we simply consider as a change of variables from x
to Θ in the lagrangian.8 First we compute

N∑

j=1

ẋj ẋj =
1

N

N/2∑

n=−N/2

N/2∑

m=−N/2
Θ̇nΘ̇m

N∑

j=1

e
2πij(n+m)

N ,

where we need to evaluate the following geometric sum with q = e
2πi(n+m)

N

N∑

j=1

e
2πij(n+m)

N =

N∑

j=1

qj =
q(qN − 1)

q − 1
=
e

2πi(n+m)
N (e2πi(n+m) − 1)

e
2πi(n+m)

N − 1
=

{
0 if n+m 6= 0
N if n+m = 0

.

Thus, the kinetic energy is

T =
m

2

N∑

j=1

ẋj ẋj =
1

N

N/2∑

n=−N/2

N/2∑

m=−N/2
Θ̇nΘ̇mNδm,−n =

m

2

N/2∑

n=−N/2
|Θ̇n|2 ,

8We do not use our knowledge of the solution for Θ’s.
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where we have used the reality conditions (I.2.25) and (I.2.26). Analogously, for the potential energy
one finds

U =
1

2

∑

ij

kijxixj =
1

2N

N/2∑

n=−N/2

N/2∑

s=−N/2

∑

i

A
(n)
i

[∑

j

kijA
(s)
j

]

︸ ︷︷ ︸
mω2

sA
(s)
i

ΘnΘs

=
m

2N

N/2∑

n=−N/2

N/2∑

s=−N/2
ω2
sΘnΘs

N∑

i=1

A
(n)
i A

(s)
i

︸ ︷︷ ︸
Nδn+s,0

=
m

2

N/2∑

n=−N/2
ω2
n|Θn|2 ,

where we again used the geometric sum and the reality conditions. Thus, the lagrangian is indeed
factorised into a sum of the individual normal mode contributions

L =
m

2

N/2∑

n=−N/2

(
|Θ̇n|2 − ω2

n|Θn|2
)
.

With the reality conditions taken into account, this lagrangian can be more explicitly written as

L =
m

2
Θ̇2

0 +m
(

Θ̇2
N/2 − ω2

N/2Θ2
N/2

)

+ m

N/2−1∑

n=1

[(
˙ReΘn

)2

− ω2
n

(
ReΘn

)2

+
(

˙ImΘn

)2

− ω2
n

(
ImΘn

)2
]
.

The physical content of this theory constitutes two real non-degenerate normal models (one for for
the linear motion and another for oscillations with the maximal frequency ωN/2) and 2(N/2 − 1)
doubly degenerate modes, see Fig. 2.6. Double degeneracy means that for one ωn there are two
different oscillatory modes corresponding to ReΘn and ImΘn. The total number of real normal
modes entering the lagrangian is 1 + 1 + 2(N/2 − 1) = N , N − 1 of which are oscillatory and one
corresponds to free motion.

2.3.4 Lagrangians for continuous systems

So far our discussion concerned a dynamical system with a finite number of degrees of freedom. To
describe continuous systems, such as vibrating solid, a transition to an infinite number of degrees of
freedom is necessary. Indeed, one has to specify the position coordinates of all the points which are
infinite in number.

The continuum case can be reached by taking the appropriate limit of a system with a finite
number of discrete coordinates. Our first example is an elastic rod of fixed length ` which undergoes
small longitudinal vibrations. We approximate the rod by a system of equal mass m particles spaced
a distance ∆a apart and connected by uniform massless springs having the force (Hooke’s) constant
κ. The total length of the system is ` = (n+ 1)∆a. We describe the displacement of the ith particle
from its equilibrium position by the coordinate φi. Then the kinetic energy of the particles is

T =

n∑

i=1

m

2
φ̇2
i .

The potential energy is stored into springs and it is given by the sum

U =
1

2
κ

n∑

i=0

(φi+1 − φi)2 .
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· · ·

Figure 2.7: Particles connected by springs. Particles are enumerated from the left to the right
as 1, 2, . . . , n, while springs as 0, 1, . . . , n. The distance between two neighbouring particles in the
equilibrium position is ∆a and the length between the boundaries is ` = (n+ 1)∆a.

Here we associate φ0 = 0 = φn+1 with the end points of the interval which do not move. The force
acting on ith particle is Fi = − ∂U

∂φi
:

Fi = κ(φi+1 + φi−1 − 2φi) .

This formula shows that the force exerted by the spring on the right of the ith particle equals to
κ(φi+1 − φi), while the force exerted from the left is κ(φi − φi−1). The Lagrangian is

L = T − U =

n∑

i=1

m

2
φ̇2
i −

1

2
κ

n∑

i=0

(φi+1 − φi)2 .

At this stage we can take a continuum limit by sending n→∞ and ∆a→ 0 so that ` = (n+ 1)∆a
is kept fixed. Increasing the number of particles we will be increasing the total mass of a system.
To keep the total mass finite, we assume that the ratio m/∆a→ µ, where µ is a finite mass density.
To keep the force between the particles finite, we assume that in the large particle limit κ∆a→ Y ,
where Y is a finite quantity. Thus, we have

L = T − U =
1

2

n∑

i=1

∆a
( m

∆a

)
φ̇2
i −

1

2

n∑

i=0

∆a(κ∆a)
(φi+1 − φi

∆a

)2

.

Taking the limit, we replace the discrete index i by a continuum variable x. As a result, φi → φ(x).
Also

φi+1 − φi
∆a

→ φ(x+ ∆a)− φ(x)

∆a
→ ∂xφ(x) .

Thus, taking the limit we find

L =
1

2

∫ `

0

dx
[
µφ̇2 − Y (∂xφ)2

]
.

Also equations of motion can be obtained by the limiting procedure. Starting from

m

∆a
φ̈i − k∆a

φi+1 + φi−1 − 2φi
∆a2

= 0,

and using

lim
∆a→0

φi+1 + φi−1 − 2φi
∆a2

=
∂2φ

∂x2
≡ ∂xxφ

we obtain the equation of motion
µφ̈− Y ∂xxφ = 0 .

Just as there is a generalized coordinate φi for each i, there is a generalized coordinate φ(x) for
each x. Thus, the finite number of coordinates φi has been replaced by a function of x. Since φ
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depends also on time, we are dealing with the function of two variables φ(x, t) which is called the
displacement field. The Lagrangian is an integral over x of the Lagrangian density

L =
1

2
µφ̇2 − 1

2
Y (∂xφ)2 .

The action is a functional of φ(x, t):

S[φ] =

∫ t2

t1

dt

∫ `

0

dxL (φ(x, t), φ̇(x, t), ∂xφ(x, t)) .

It is possible to obtain the equations of motion for the field φ(x, t) directly from the continuum
Lagrangian. One has to understand how the action changes under an infinitesimal change of the
field

φ(x, t)→ φ(x, t) + δφ(x, t) . (I.2.28)

The derivatives change accordingly,

∂

∂t
φ(x, t)→ ∂

∂t
φ(x, t) +

∂

∂t
δφ(x, t) ,

∂

∂x
φ(x, t)→ ∂

∂x
φ(x, t) +

∂

∂x
δφ(x, t) .

This gives

δS[φ] = S[φ+ δφ]− S[φ] =

∫ t2

t1

dt

∫ `

0

dx
[∂L

∂φ
δφ+

∂L

∂φ̇
∂tδφ+

∂L

∂(∂xφ)
∂xδφ

]
.

Integrating by parts, we find

δS[φ] =

∫ t2

t1

dt

∫ `

0

dx
[∂L

∂φ
− ∂t

∂L

∂φ̇
− ∂x

∂L

∂(∂xφ)

]
δφ

+

∫ `

0

dx
∂L

∂(∂tφ)
δφ|t=t2t=t1 +

∫ t2

t1

dt
∂L

∂(∂xφ)
δφ|x=`

x=0 . (I.2.29)

The action principle requires that the action principle be stationary with respect to infinitesimal
variations of the fields that leave the field values at the initial and finite time unaffected, i.e.

δφ(x, t1) = δφ(x, t2) = 0 .

On the other hand, since the rod is clamped, the displacement at the end points must be zero, i.e.

δφ(0, t) = δφ(`, t) = 0 .

Under these circumstances we derive the Euler-Lagrange equations for our continuum system

∂

∂t

( ∂L

∂(∂tφ)

)
+

∂

∂x

( ∂L

∂(∂xφ)

)
− ∂L

∂φ
= 0 .

Let us now discuss the solution of the field equation

φ̈− c2∂xxφ = 0 , c =

√
Y

µ
,
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where c is the propagation velocity of vibrations through the rod. This equation is linear and, for
this reason, its solutions satisfy the superposition principle. Take an ansatz

φ(x, t) = eikxak(t) + e−ikxbk(t) .

If we impose φ(0, t) = 0, then bk(t) = −ak(t) and we can refine the ansatz as

φ(x, t) = ak(t) sin kx .

Requiring that φ(`, t) = 0 we get sin k` = 0, i.e. k ≡ kn = πn
` . Coefficients ak(t) then obey

äk + c2k2ak(t) = 0 → ak(t) = eiωktak ,

where ωk = ±ck is the dispersion relation. Thus, the general solution is

φ(x, t) =
∑

n

sin knx
(
An cosωnt+Bn sinωnt

)
, ωn = ckn ,

and the constants An, Bn are fixed by the initial conditions, which is an initial profile φ(x, 0) and
an initial velocity φ̇(x, 0).

The generalisation to continuous systems in more space dimensions is now straightforward. In two
dimensions one can start with two-dimensional lattice of springs. The displacement of a particle
at the site (i, j) is measured by the quantity ~φij , which is a two-dimensional vector. In the limit
when we go to a continuum, this becomes a displacement field ~φ(x, y, t) of a membrane subjected to
small vibrations in the (x, y)-plane. In three dimensions we get a vector ~φijk. The continuous limit
yields a three-dimensional displacement field ~φ(x, y, z, t) of a continuous solid vibrating in the x, y, z
directions with eoms of a partial differential equation type:

~̈φ− c1∂xx~φ− c2∂yy~φ− c3∂zz~φ− c4∂xy~φ− c5∂yz~φ− c6∂xz~φ = 0 ,

the coefficients ci encode the properties of the solid.

2.4 Rigid body

A rigid body is a system of point masses, constrained by holonomic relations expressed by the fact
that the distance between points is constant.9 Historically, the description of the motion of rigid
bodies was amongst the first problems of analytic mechanics. Of special interest, since 18th century,
remains the dynamics of spinning tops, where the cases of Euler, Lagrange and Kowalevski provided
prominent examples of completely integrable systems.

Below we outline the general approach to describe the motion of a rigid body and further consider
the solvable case of Euler’s top.

2.4.1 Angular velocity

To describe a motion of a rigid body, we introduce two orthogonal coordinate systems: one which is
:::::::::
stationary

:::::::::::
(immovable)

::::
and,

:::::::::
therefore,

:::::::
inertial with coordinate axesXY Z, and another one

::::::::
(moving)

:::::
which

::
is

::::::
rigidly

:::::
fixed

::
to

::
a
:::::
body and which participates in all its motions. We denote the axes of this

moving coordinate system as x1 = x, x2 = y, x3 = z and fix its origin at some point O which should
nor necessarily coincide with the center of mass.

9Holonomic constraints are constraints which are expressible as a function of the coordinates xj and time t, i.e.
they do not involve velocities and higher derivatives of coordinates.
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Figure 2.7: The radius-vector of a point with respect to stationary (~q) and moving ( ~Q) reference
frames.

coordinate system as x1 = x, x2 = y, x3 = z and fix its origin at some point O which should nor
necessarily coincide with the center of mass.

Let us consider some arbitrary vector or pseudo-vector involved in the mechanical problem, such a
position vector ~r or the total angular momentum ~L. Typically such a vector will be changing in time
as the body moves, but the change will depend on the choice of the coordinate system to which the
observations are referred. For example, consider a point of the rigid body and the radius-vector ~r
which points from the origin of the stationary coordinate system to this point. As the body moves,
this radius-vector which components are measured with respect to the stationary system will vary
in time. On the other hand, if we consider the radius-vector ~r from the origin of the body set of
axes to this point, then such a vector appears constant when measured as the body set of axes.

Consider am arbitrary infinitesimal displacement of a rigid body. An infinitesimal displacement d~r
of a point P of the body for a time dt will be given by the sum of the displacement d~R of the center
of the movable coordinate system and the rotation d~'⇥ ~r of this system by an angle d~'

d~r = d~R + d~'⇥ ~r . (I.2.27)

Dividing this expression by dt, we obtain

~v = ~V + ~! ⇥ ~r . (I.2.28)

Here ~v = d~r
dt is the velocity of P with respect to the stationary coordinate system, ~V =

~R
dt is the

velocity of O with respect to this system and the vector

~! =
d~'

dt

is called angular velocity of the rigid body. In general, ~! depends on t. Formula (I.2.27) is essentially
based on the

~r

Eulers’s theorem. The general displacement of a rigid body with one fixed point is a rotation
about some axis.
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Figure 2.8: Relation between the radius-vectors of a point of the rigid body in the stationary and
moving coordinate systems.

Consider an arbitrary infinitesimal displacement of a rigid body. An infinitesimal displacement d~r
of a point P of the body for a time dt will be given by the sum of the displacement d~R of the center
of the moving coordinate system and the shift δ~r = d~ϕ× ~r with is due to rotation of this system by
an angle d~ϕ

d~r = d~R+ d~ϕ× ~r . (I.2.30)

Dividing this expression by dt, we obtain

~v = ~V + ~ω × ~r . (I.2.31)

Here ~v = d~r
dt is the velocity of P with respect to the stationary coordinate system, ~V = d~R

dt is the
velocity of O with respect to this system and the vector

~ω =
d~ϕ

dt

is called angular velocity of the rigid body. The definition of the angular velocity does not depend
on the choice of the moving coordinate system and is associated to the rigid body as the whole. In
general, ~ω depends on t.

It should be pointed out that formulae (I.2.30) and (I.2.31) are essentially based on the

Eulers’s theorem. The general displacement of a rigid body with one fixed point is a rotation
about some axis.

Equation (I.2.30) is an infinitesimal version of the global formula describing an arbitrary motion of
the rigid body in time, namely,

~r(t) = ~R(t) +Bt~r , (I.2.32)

where~r is the radius-vector of the point P measured with respect to the axes of themoving coordinate
system and Bt is an orthogonal transformation that encodes rotation of the moving system in time
with respect to the stationary system (the XY Z-system translated to O).10 Would the translational

10We stress that ~r is time-independent as the body point P does not move with respect to the moving system.
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Figure 2.9: Coordinates of an arbitrary vector ~A in the stationary XY Z-frame and in the rotating
xyz-frame. Coordinates do depend on the choice of the coordinate system. Two sets of coordinates
are related by means of an orthogonal transformation B. This a passive point of view on rotations:
the position vector ~A is a spectator fixed in space while the coordinate system transforms.

motion be absent and the origins of the stationary and moving coordinates systems coincide, then
~r = ~r and formula (I.2.32) would take the form

~r(t) = Bt~r , (I.2.33)

In fact, for any fixed time, ~r and ~r represent coordinates of the one and the same geometric point
P , but with respect to two different coordinate systems, the stationary and the rotating, respec-
tively, see Fig. 3.6. The orthogonal matrix Bt connects these coordinates at any moment of time,
mathematically realising the physical picture of rotation.

To make a connection between (I.2.31) and (I.2.32), we differentiate (I.2.32) in time to get

~v = ~V + Ḃt~r

Regarding (I.2.33) as the relation between the coordinates of the one and the same vector with
respect to the stationary and moving frames sharing the same origin, we use it to write ~r = B−1

t r
and, substituting this expression for ~r into the previous equation, we obtain11

~v = ~V + ḂB−1r . (I.2.34)

Here ḂB−1 = ḂBt appears a skew-symmetric 3 × 3-matrix, where the upper index t stands for
transposition.12 Indeed, differentiating over time the orthogonality condition BBt = 1, we get

ḂBt +BḂt = ḂBt + (ḂBt)t = 0 .

It is known that the result of the action of a skew-symmetric matrix 3 × 3 on an arbitrary vector
r, can be realised as cross-product by some fixed vector ~ω, so that ḂB−1r = ~ω × ~r. In this way we
have shown how (I.2.34) reproduces (I.2.31), as well as found the relation between ~ω and B. This
relation can be explicitly written as

ωi = −1

2
εijk(ḂBt)jk , (I.2.35)

11We omit the subscript “t”, as it is clear from the context that B is t-dependent.
12We note by passing that ḂB−1 is an element of the so(3) Lie algebra.
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where ωi are components of ~ω with respect to the stationary coordinate system.

As we have already seen, any orthogonal matrix describing rotations depends on three parameters.
For instance, in subsection 2.2.2 we have chosen a unit vector na and an angle ϕ as such a set of
parameters, see (I.2.12) for an explicit form of the corresponding rotation matrix. Different choices
of parameters are possible, but the one most convenient for describing the dynamics of the rigid
body is proved to be in terms of eulearin angles. We postpone an introduction of these angles
for later, dwelling here on the general idea that three generalised angles are needed to specify the
position of the rotating coordinate system with respect to the stationary one. Together with three
components of the position vector R(t) describing the motion of the center O of the moving system,
these generalised angles constitute 6 degrees of freedom of the rigid body.

What concerns rotations, the information about the position of the body in space relative to the
axes of the stationary system is contained in the matrix Bt, which time evolution becomes the main
problem of the rigid body dynamics. According to (I.2.35), components of the angular velocity
are functions of generalised angles and their time derivatives; as such, they can be understood
as generalised velocities corresponding to generalised angles. As is also clear from (I.2.35), the
components do not depend on the choice of the moving coordinate system – neither on the position
of its origin nor on the orientation of its axes, provided all these orientations are related to each other
by orthogonal transformations. Indeed, under any such constant (time-independent) orthogonal
transformation g of the moving system, the matrix B will transform as B → Bg, which leaves the
combination ḂBt invariant.

We also point out the following fact important for later considerations. In fact, equation (I.2.33) is
valid for any vector ~A, not necessarily constant. In this case we have

~A(t) = Bt~A(t) , (I.2.36)

where ~A and ~A are components of the one and the same vector but in the rotating and stationary
frames, respectively. Taking time derivative, we get

~̇A = Bt ~̇A + Ḃt~A = Bt ~̇A + ḂtB
−1
t

~A = Bt ~̇A + ω × ~A . (I.2.37)

It will be further convenient to define the angular momentum velocity ~Ω measured with respect to
the body axes and, therefore, related to ω as (I.2.36), that is ~ω = Bt~Ω. Then (I.2.37) can be written
as

~̇A = Bt ~̇A +Bt~Ω×Bt~A . (I.2.38)

It remains to recall the following fact from geometry. For any rotation matrix B, i.e. an orthogonal
matrix with the unit determinant, the following equivariance property of the cross product holds

B(u× v) = Bu×Bv , ∀u, v ∈ R3 . (I.2.39)

This property allows one to rewrite (I.2.38) in the form

~̇A = Bt

[
~̇A + ~Ω× ~A

]
. (I.2.40)

Let us stress that we deal with the one and the same vector ~A. The expression in the brackets is
evaluated with respect to the coordinate axes of the moving system, the vector is evaluated in the
stationary frame. We will essentially use (I.2.40) when deriving Euler’s equations. Finally, we give
an expression for the angular velocity ~Ω inside the body

Ωi = −1

2
εijk(BtḂ)jk . (I.2.41)

This formula follows from (I.2.35) together with the equivariance property of the Levi-Civita tensor
εijk under orthogonal transformations, cf. (I.2.39). Under B → Bg, one has ~Ω→ g−1~Ω.
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2.4.2 Lagrangian

To compute the kinetic energy of a rigid body, one can consider it as a discrete system of material
particles and then sum (integrate in the case of continuum) their kinetic energies

T =
∑ m

2
~v2 .

Using (I.2.31), we obtain

T =
∑ m

2
(~V + ~ω × ~r)2 =

1

2
~V 2
∑

m+
(
~V , ~ω ×

∑
m~r
)

+
1

2

∑
m(~ω × ~r, ~ω × ~r) .

From this formula it is clear that it is convenient to put the origin of the moving system in the center
of mass, where

∑
m~r = 0. Denoting the total mass as M =

∑
m, we will then have

T =
M

2
~V 2 +

1

2

∑
m(~ω × ~r, ~ω × ~r) .

Here the first term is the kinetic energy of the translational motion and it looks like as if the whole
mass of the body would be concentrated in its center of mass. The second term is the kinetic energy
of the rotational motion around an axis passing through the center of mass. The possibility to split
the energy in these two parts is due to the choice of the origin of the body reference frame in its
center of mass.

Let U be the potential energy of the rigid body in an external field. In general, the potential energy
is a function of six variables defining the position of the rigid body: 3 coordinates (X,Y, Z) = ~R of
the center of mass and three angles ~ϕ, defining the orientation of the body axes with respect to the
stationary coordinate system. The lagrangian of the body is then L = T − U , that is

L
(
~R, ~ϕ, ~V , ~ω

)
=
M

2
~V 2 +

1

2

∑
m(~ω × ~r, ~ω × ~r)− U(~R, ~ϕ) . (I.2.42)

This lagrangian is a function of generalised coordinates ~R and ~ϕ, and the corresponding generalised
velocities ~V and ~ω. The first set of the Euler-Lagrange equations is

d

dt

∂L

∂~V
− ∂L

∂ ~R
=

d

dt
(M~V ) +

∂U

∂ ~R
=
d~P

dt
+
∂U

∂ ~R
= 0 ,

where we recall that ~P = M~V is the total momentum. Here

~F = −∂U
∂ ~R

is the force which is equal to the sum of all forces acting on each particle of the body. In fact,
~F is equal to the sum of external forces because all internal forces cancel. Thus, the first set of
Euler-Lagrange equations is

d~P

dt
= ~F . (I.2.43)

The second set of the Euler-Lagrange equations is

d

dt

∂L

∂~ω
− ∂L

∂~ϕ
=

d

dt

(∑
m~r × (~ω × ~r)

)
+
∂U

∂~ϕ
= 0 ,

where to vary the lagrangian over ~ω, we made use of the formula

(~ω × ~r, ~ω × ~r) = (~r × (~ω × ~r), ~ω) .
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Further, we note that
∑

m~r × (~ω × ~r) =
∑

~r ×m~v =
∑

~r × ~p = ~L , (I.2.44)

where ~L is the total angular momentum computed with respect to the stationary coordinate system
with the origin at the center of mass of the rigid body. With this observation, the second set of
Euler-Lagrange equations take the form

d~L

dt
= −∂U

∂~ϕ
= ~N , (I.2.45)

where ~N is the torque. Equations (I.2.43) and (I.2.45) are equations of motion for the rigid body. In
the absence of external forces these equations simply reduce to conservation laws of the total linear
and angular momenta

d~P

dt
= 0 ,

d~L

dt
= 0 .

We stress that ~P and ~L here are computed with respect to a stationary, i.e. inertial frame, in
particular, for ~L with the coordinate origin in the center of mass of the rigid body.

2.4.3 Inertia tensor

In the following we assume that translational motion is absent. Now we would like to change the
coordinates in the kinetic energy to that of the moving system. We have

T =
1

2

∑
m(~ω × ~r, ~ω × ~r) =

1

2

∑
m
(
Bt~Ω×Bt~r, Bt~Ω×Bt~r

)

=
1

2

∑
m
(
Bt(~Ω×~r), Bt(~Ω×~r)

)
=

1

2

∑
m
(
~Ω×~r, ~Ω×~r

)
.

Here in the first step we used property (I.2.39) of the cross product and in the second step, the
invariance of the scalar product with respect to orthogonal transformations. Thus, the kinetic
energy of the rotating body expressed via quantities of the moving system is

T =
1

2

∑
m
(
~Ω×~r, ~Ω×~r

)
,

where we recall that the position vector ~r of mass m is time-independent.

Let xi and Ωi denote the components of ~r and ~Ω, respectively. In terms of these components the
kinetic energy is

T =
1

2
ΩiΩj

∑
m(δijx2 − xixj) , x2 ≡~r2 . (I.2.46)

Introducing a tensor

Iij =
∑

m(δijx2 − xixj) , (I.2.47)

we rewrite this kinetic energy in the form

T =
1

2
IijΩiΩj =

1

2
~ΩtI~Ω ,
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where the last term is written in the matrix form. As is clear from its definition, tensor Iij is
symmetric Iij = Iji. This second rank tensor is called the moment of inertia tensor or simply the
inertia tensor. In the continuum case the inertia tensor is given by

Iij =

∫
ρ(~r)(x2δij − xixj)dV ,

where ρ(~r) is the mass density.

In the matrix form the inertia tensor looks as

I =



∑
m(x2

2 + x2
3) −∑mx1x2 −∑mx1x3

−∑mx1x2

∑
m(x2

1 + x2
3) −∑mx2x3

−∑mx1x3 −∑mx2x3

∑
m(x2

1 + x2
2)


 .

As any real symmetric matrix, the inertia tensor can be brought to the diagonal form by the cor-
responding choice of directions of the axes x1, x2, x3. These directions are then called the principal
inertia axes. The diagonal components I1, I2, I3 are known as principal moments of inertia. Via
the principle moments of intertia the rotation energy is expressed as

Trot =
1

2
(I1Ω2

1 + I2Ω2
2 + I3Ω2

3) .

With respect to the principle moments of inertia, rigid bodies are characterised as

• a body for which all three moments are different is called an asymetric top;

• a body for which I1 = I2 6= I3 is called symmetric top. In this case the choice of principal axes
in the x1x2-plane is arbitrary;

• a body for which I1 = I2 = I3 is called spherical top. A choice of any three principal axes is
arbitrary: any three perpendicular axes do the job;

• a body for which I1 = I2 and I3 = 0 is called rotator. This is the case of a system of particles
lying on the same x3-axis. Its peculiarity that it has not three but two rotational degrees of

Rotator is a rigid
stickfreedom corresponding to rotations around the axes x1 and x2.

Now we explain the relationship between the total angular momentum and the angular velocity.
Choosing the center of a stationary coordinate system in the center of mass of the rigid body, for
the angular momentum we have

~L =
∑

m~r × (~ω × ~r) = Bt
∑

m~r× (~Ω×~r) = Bt ~M ,

where we have introduced the angular momentum ~M inside the body

~M =
∑

m~r× (~Ω×~r) . (I.2.48)

We further have [
~r× (~Ω×~r)

]
i

= Ωix2 − xixjΩj = (x2δij − xixj)Ωj .

Thus, the components of the angular momentum in the moving frame are related to the components
of the angular velocity in this frame as

Mi =
∑

m(x2δij − xixj)Ωj = IijΩj .

Regarding I as a 3× 3 matrix, we can write the last relation in the form
~M = I~Ω . (I.2.49)

If the axes x1, x2, x3 are directed along the principal inertia axes, then the above formula yields

M1 = I1Ω1 , M2 = I2Ω2 , M3 = I3Ω3 . (I.2.50)
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2.4.4 Euler’s top

Here we study the motion of a rigid body attached to one point in the absence of external forces.

Definition. The Euler top is a rigid body without any particular symmetry that rotates in the
absence of any external forces around a fixed point that coincides with its center of mass.

For the Euler top ~P = 0 and the Euler-Lagrange equation coincides with the conservation law of
the total angular momentum

d~L

dt
= 0 . (I.2.51)

This equation is written with respect to a stationary coordinate system, i.e. with respect to this
system ~L is a constant vector. On the other hand, relation (I.2.50) between the angular momen-
tum and the angular velocity arises in the moving coordinate system oriented along the principal
inertia axis. To exploit this relation, we therefore need to transform equation (I.2.51) in the moving
coordinate system. This is done with the help of equation (I.2.40), according to which

d~L

dt
= Bt

[
d ~M

dt
+ Ω× ~M

]
.

Here ~L and ~M are components of the angular momentum with respect to the stationary and moving
coordinate systems, respectively. Thus, with respect to the rotating system equation of motion
(I.2.51) takes the form

d ~M

dt
+ ~Ω× ~M = 0 . (I.2.52)

Introducing the orts ~ex, ~ey, ~ez of the rotating system with coordinates x1 = x, x2 = y, x3 = z
directed along the principal inertia axes, we first compute

~Ω× ~M =

∣∣∣∣∣∣

~ex ~ey ~ez
Ω1 Ω2 Ω3

I1Ω1 I2Ω2 I3Ω3

∣∣∣∣∣∣
= ~ex(I3 − I2)Ω2Ω3 + ~ey(I1 − I3)Ω1Ω3 + ~ez(I2 − I1)Ω2Ω3 .

Thus, for the components of the angular velocity in the moving frame we find the following equations

I1
dΩ1

dt
+ (I3 − I2)Ω2Ω3 = 0 ,

I2
dΩ2

dt
+ (I1 − I3)Ω3Ω1 = 0 ,

I3
dΩ3

dt
+ (I2 − I1)Ω1Ω2 = 0.

(I.2.53)

These are the so-called Euler’s equations.

Conservations laws. Euler’s equations have two integrals of motion. The first one is the total
energy E which just coincides with the kinetic energy

E =
1

2
ΩiIijΩj =

1

2
I1Ω2

1 +
1

2
I2Ω2

2 +
1

2
I3Ω2

3 . (I.2.54)

It is conserved due to Euler’s equations. Indeed,

dE

dt
= I1Ω̇1Ω1 + I2Ω̇2Ω2 + I3Ω̇3Ω3
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= (I2 − I3)Ω1Ω2Ω3 + (I3 − I1)Ω1Ω2Ω3 + (I1 − I2)Ω1Ω2Ω3 = 0 .

The second integral is the length of the angular momentum. We have

L2 ≡ ~L2 = (Bt ~M,Bt ~M) = ~M2 = M2
1 +M2

2 +M2
3 = I2

1 Ω2
1 + I2

2 Ω2
2 + I2

3 Ω2
3 . (I.2.55)

Its conservation can also be proved by an explicit calculation

1

2

dL2

dt
= I2

1 Ω̇1Ω1 + I2
2 Ω̇2Ω2 + I2

3 Ω̇3Ω3

= I1(I2 − I3)Ω1Ω2Ω3 + I2(I3 − I1)Ω1Ω2Ω3 + I3(I1 − I2)Ω1Ω2Ω3 = 0 .

Note that nether E nor L2 involve time derivatives of Ω’s.

Thus, we have proven that Euler’s equations have two quadratic integrals – the energy and L2. As
a consequence, ~M lies on the intersection of an ellipsoid and a sphere:

2E =
M2

1

I1
+
M2

2

I2
+
M2

3

I3
, L2 = M2

1 +M2
2 +M2

3 . (I.2.56)

One can further study the structure of the curves of intersection by fixing the ellipsoid E > 0 and
changing the radius of the sphere.

Integrating Euler’s equations. From the conservation laws (I.2.54) and (I.2.55) we can express
two angular velocities, for instance, Ω1 and Ω3,

Ω2
1 =

1

I1(I3 − I1)

(
(2EI3 − L2)− I2(I3 − I2)Ω2

2

)
,

Ω2
3 =

1

I3(I3 − I1)

(
(L2 − 2EI1)− I2(I2 − I1)Ω2

2

)
.

Then plugging these expressions into the Euler equation for Ω2, we obtain

dΩ2

dt
=

1

I2
√
I1I3

√(
(2EI3 − L2)− I2(I3 − I2)Ω2

2

)(
(L2 − 2EI1)− I2(I2 − I1)Ω2

2

)
.

For definiteness we assume that I3 > I2 > I1 and also that L2 > 2EI2. Then making the substitu-
tions

τ = t

√
(I3 − I2)(L2 − 2EI1)

I1I2I3
, s = Ω2

√
I2(I3 − I2)

2EI3 − L2

and introducing the positive parameter k2 < 1 by13

k2 =
(I2 − I1)(2EI3 − L2)

(I3 − I2)(L2 − 2EI1)
,

we obtain
τ =

∫ s

0

ds√
(1− s2)(1− k2s2)

.

The initial time τ = 0 is chosen such that for s = 0 one has Ω2 = 0. Inverting the last integral, one
gets the Jacobi elliptic function

s = sn τ .

Using two other elliptic functions

cn2 τ + sn2 τ = 1 , dn2 τ + k2 sn2 τ = 1 ,

13For a solution to exist the values of L2 must be bounded: 2EI1 < L2 < 2EI3.
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Figure 2.10: The eulerian angles. Here XY Z and x1x2x3 are the stationary and moving coordinate
systems, respectively. The line ON is called the line of nodes.

we obtain the solution

Ω1 =

√
2EI3 − L2

I1(I3 − I1)
cn τ , Ω2 =

√
2EI3 − L2

I2(I3 − I1)
sn τ , Ω3 =

√
L2 − 2EI1
I3(I3 − I1)

dn τ .

The real period of all these three elliptic functions is given by 4K, where K is the complete elliptic
integral of the first kind:

K =

∫ 1

0

ds√
(1− s2)(1− k2s2)

.

The period T in time t is, therefore,

T = 4K

√
I1I2I3

(I3 − I2)(L2 − 2EI1)
.

After this time both ~Ω and ~M will return to their original values. Thus, ~Ω and ~M perform a strictly
periodic motion. What is remarkable, is that the top itself does not return to its original position
with respect to the stationary coordinate system, as we now explain.

Eulerian angles. Our primary interest is to understand how the rigid body rotates in space rather
than to know the time evolution of the angular velocity or the angular momentum in the moving
frame. This information is encoded in the matrix Bt that is parametrised by three parameters,
which we choose to be the eulerian angles.

Let XY Z and x1x2x3 be the the stationary and moving coordinate frames, respectively, see Fig.
2.10. Denote by ON the line of nodes, that is the line of intersection of the planes XOY and x1Ox2.
The angles φ, θ, ψ in Fig. 2.10 are called eulerian angles. The angle θ takes values from 0 to π, and
φ and ψ from 0 to 2π.

Eulerian angles parametrise the following orthogonal matrix B
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B =

 cosψ cosφ− cos θ sinφ sinψ − sinψ cosφ− cos θ sinφ cosψ sin θ sinφ
cosψ sinφ+ cos θ cosφ sinψ − sinψ sinφ+ cos θ cosφ cosψ − sin θ cosφ

sin θ sinψ sin θ cosψ cos θ

 . (I.2.57)

Matrix B relates the coordinates ~A = (x, y, z)t of any vector in the moving frame with axes x1x2x3

with the coordinates ~A = (X,Y, Z)t of the same vector in the stationary frame with axes XY Z14

~A = B~A .

With an explicit parametrisation of Bt in term of eulerian angles, we can now apply (I.2.35) to read
off the components of the angular velocity ~ω in the stationary frame

ω1 = ψ̇ sin θ sinφ+ θ̇ cosφ ,

ω2 = −ψ̇ sin θ cosφ+ θ̇ sinφ ,

ω3 = ψ̇ cos θ + φ̇ .

(I.2.58)

Analogously, applying (I.2.41) we find the components of the angular velocity ~Ω inside the body

Ω1 = φ̇ sin θ sinψ + θ̇ cosψ ,

Ω2 = φ̇ sin θ cosψ − θ̇ sinψ ,

Ω3 = φ̇ cos θ + ψ̇ .

(I.2.59)

As a remark, both (I.2.58) and (I.2.59) can also be found geometrically, just by inspecting Fig. 2.10.
For instance, let us show this for (I.2.59). The angular velocity of the system is compounded of
angular velocities θ̇ about ON , φ̇ about OZ and ψ̇ about Ox3. First we find the projections of these
velocities on the coordinate axes of the moving frame. For the projections of θ̇ we have

θ̇1 = θ̇ cosψ , θ̇2 = −θ̇ sinψ , θ̇3 = 0 .

The velocity φ̇ is directed along the axis Z of the stationary coordinate system. Its projections on
the axes of the moving frame are

φ̇1 = φ̇ sin θ sinψ , φ̇2 = φ̇ sin θ cosψ , φ̇3 = φ̇ cos θ .

The velocity ψ̇ is directed along x3. Collecting components along each axis, we obtain (I.2.59).

Lagrangian. Substituting (I.2.59) into the expression for the kinetic energy T = 1
2IiΩ

2
i , we obtain

T in terms of the eulerian angles and their derivatives

T =
I1
2

(φ̇ sin θ sinψ + θ̇ cosψ)2 +
I2
2

(φ̇ sin θ cosψ − θ̇ sinψ)2 +
I3
2

(φ̇ cos θ + ψ̇)2 . (I.2.60)

Note that this expression simplifies for a symmetric top I1 = I2

Tsym =
I1
2

(θ̇2 + φ̇2 sin2 θ) +
I3
2

(φ̇ cos θ + ψ̇)2 . (I.2.61)

The form (I.2.60) fits the general expression for the kinetic energy in generalised coordinates

T =
1

2

3∑

i,j=1

gij(ϕ)ϕ̇iϕ̇j , ~ϕ = (φ, θ, ψ) , (I.2.62)

14The proof of this fact can be found, for instance, in Goldstein, Poole and Safko, Classical Mechanics, Addison
Wesley, 2002.
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where gij(ϕ) is the corresponding metric. Regarding (I.2.60) as the lagrangian L = T , we can derive
the Euler-Lagrange equations for ~ϕ,

d

dt

∂L

∂φ̇
− ∂L

∂φ
= 0 ,

d

dt

∂L

∂θ̇
− ∂L

∂θ
= 0 ,

d

dt

∂L

∂ψ̇
− ∂L

∂ψ
= 0 . (I.2.63)

The reader can verify that these 2nd order differential equations coincide with the 1st order Euler’s
equations (I.2.53) upon we substitute in them the expressions (I.2.59) for the components of the
angular velocity. Note also that φ is a cyclic coordinate, so that the corresponding momentum

pφ = M1 sin θ sinψ +M2 sin θ cosψ +M3 cos θ = LZ

is conserved. It is now clear how integration of the very complicated Euler-Lagrange equations
(I.2.63) proceeds. First, by a clever choice of variables Ωi as in (I.2.59) one reduces the 2nd order
equations to the 1st order Euler’s equations, which can be further integrated by quadrature due to
the existence of two integrals of motion: E and L2. After Eulers’s equations for Ωi are solved, one
needs to come back to (I.2.59) and solve these equations for (φ, θ, ψ).

Motion of Euler’s top in space. There is a simpler way to solve for for (φ, θ, ψ) than to try
to directly integrate (I.2.59). By using eulerian angles we can relate the angular momenta in the
moving and the stationary coordinate systems. Using yet another arbitrariness in the choice of the
orientation of the stationary coordinate system XY Z, we choose it such that the angular momentum
~L will directed along the Z axis. For the momentum in the moving coordinate system we then get

~M = B−1~L = Bt




0
0
L


 , (I.2.64)

where B is given by (I.2.57). Explicitly,

L sin θ sinψ = I1Ω1 ,

L sin θ cosψ = I2Ω2 ,

L cos θ = I3Ω3 ,

where L = |~L| is the length of ~L. From here

cos θ =
I3Ω3

L
, tanψ =

I1Ω1

I2Ω2
.

Substituting here the solution for Ωi allows one to find

cos θ =

√
I3(L2 − 2EI1)

L2(I3 − I1)
dn τ ,

tanψ =

√
I1(I3 − I2)

I2(I3 − I1)

cn τ

sn τ
.

Thus, both angles θ and ψ are periodic functions of time with the period T (the same period as
for ~Ω). However, the angle φ does not appear in the formulas relating the angular momenta in
the moving and the stationary coordinate systems. We can find it from the first two equations of
(I.2.59), namely,

φ̇ =
Ω1 sinψ + Ω2 cosψ

sin θ
.

This yields the following differential equation

dφ

dτ
= L

I1Ω2
1 + I2Ω2

2

I2
1 Ω2

1 + I2
2 Ω2

2

.
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The solution of this equation is found by integration but the integrand appears a rather involved
combination of elliptic functions. Indeed, substituting the solution for Ω’s in the last formula, we
find

dφ

dτ
=

L

I1 cn2 τ + I2 sn2 τ
=
L

I1

1

1− α2 sn2 τ
,

where we introduced α2 ≡ 1− I2/I1 < 0, since by our assumptions I2 > I1. Thus,

φ(τ) = φ0 +
L

I1

∫ τ

0

dτ ′

1− α2 sn2 τ ′
= φ0 +

L

I1
Π
(

am(τ, k), α2, k
)
,

where Π(ϕ, α2, k) is the incomplete elliptic integral of the third kind. Here ϕ = am(τ, k) is the Jacobi
amplitude. By using this explicit expression, one can show that the period of φ, which is denoted
by T ′, is not commensurable with T . Consequently, this implies that the top never returns to its
original state.

Matrix form of Euler’s equations and generalisations. It represents a theoretical interest to
evaluate the lagrangian L = T for a matrix B without specifying its parametrisation in terms of
eulerian angles. We thus start from T = 1/2IiΩ

2
i and substitute here Ωi given by (I.2.41). Further

calculation proceeds with the use of the formula (III.7.3). Introducing a skew-symmetric matrix
S = B−1Ḃ, we find that the kinetic energy is

L =
1

4

[
2Tr(IS2)− TrITrS2

]
=

1

2
Tr(IS2) , (I.2.65)

Here I is the inertia tensor regarded as a 3× 3 symmetric matrix which we consider to be diagonal
and further introduce I = I − 1/2TrI 1. Let us derive equations of motion that follow from this
Lagrangian. First we note that

δL = Tr(δSΛ) ,

where we have introduces a skew-symmetric matrix

Λ =
1

2

(
SI + IS

)
. (I.2.66)

Next, we have
δS = δ(B−1Ḃ) = −B−1δBS +B−1δḂ .

Plugging this into the variation of the lagrangian and integrating by parts, we will get

δL = −Tr
[
B−1δB

(
Λ̇ + [S,Λ]

)]
,

from where we deduce the equations of motion

Λ̇ + [S,Λ] = 0 , (I.2.67)

where Λ is given by (I.2.66).

Further we note that this Lagrangian is invariant under B → hB, where h is a constant orthogonal
matrix. According to Noether’s theorem there exists the conserved Noether charge J corresponding
to this symmetry. It is given by

J = BΛB−1 . (I.2.68)

Computing the time derivative of J one can verify that it vanishes due to equations of motion
(I.2.67). This charge is nothing else but the conserved angular momentum. Although the lagrangian
is invariant under B → hB, the Noether charge is not, it transforms as J → hJh−1. Obviously, S
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can be identified with the matrix form of ~Ω, Λ is the angular momentum in the moving coordinate
system,15 J is the angular momentum in the stationary frame and (I.2.67) are Euler’s equations.
These equations admit straightforward generalisation to an arbitrary so(n) Lie algebra where they
are known as Euler-Arnold equations.

2.4.5 Lagrange’s top16

When a rigid body fixed at a stationary point O is in a gravitational field of the Earth, its weight
has to be taken into account. The problem of the motion of such a "heavy" rigid body has not yet
been solved in the general case and in some sense is unsolvable. One special solvable case, found
by Lagrange, is when two inertia moments are equal, for example I1 = I2 and the center of mass is
located at a position (x1 = 0, x2 = 0, x3 = l) with respect to the rotating frame. This situation is
achieved when the top has an axis of symmetry (around the third axis) and is attached to a point
on this axis.

Definition. Lagrange’s top is a heavy axially symmetric rigid body fixed at a stationary point on
its symmetry axis in a uniform gravitational field.

We assume that the stationary point O coincides with the apex of the top, as in Fig. 2.11.

Mg

Figure 2.11: Lagrange’s top spinning with its apex
being a fixed point.

Let both the stationary coordinate systemXY Z
and the rotating system x1x2x3 have the origin
at O and let the axis Z of the system XY Z be
directed vertically. The fixed point O does not
coincide with the center of mass, the latter is
lying at the distance l from the origin along the
x3-axis. Denote by Iij the inertia tensor of the
body with respect to the center of mass. The
axes x1, x2, x3 coincide with the principal inertia
axes and, therefore, Iij is diagonal, Iij = Iiδij .
However, to describe the kinetic energy of the
body fixed at O, we need to use the inertia ten-
sor with respect to O, rather then with respect
to the center of mass. In the rotating system
the center of mass is away from the origin by
the vector ~a = l~ez, where ~ez is the ort of x3.
The inertia tensor I ′ij with respect to O is then
obtained from Iij by using the formula (proved
in Tutorial VIII)

I ′ij = Iij +M(a2δij − aiaj) ,
whereM is the mass of the top. From here we see that the principal moments of inertia with respect
to O are shifted according to

I ′1 = I1 +Ml2 , I ′2 = I2 + lM2 , I ′3 = I3 ,

so that I ′1 = I ′2, because for Lagrange’s top I1 = I2. Using the eulerian angles, we write the
lagrangian L = T − U by taking into account the expression (I.2.61) for the kinetic energy of the
symmetric top where we replace I1 by I ′1, namely,

L =
I ′1
2

(θ̇2 + φ̇2 sin2 θ) +
I3
2

(φ̇ cos θ + ψ̇)2 −Mgl cos θ . (I.2.69)

15The exact relations are Ωi = − 1
2
εijkSjk and Mi = εijkΛjk, where Mi is given by (I.2.50). The inverse relations

are Sij = −εijkΩk and Λij = 1
2
εijkMk.

16This subsection is optional.
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We observe that in spite of the presence of the gravitational potential, the coordinates φ and ψ
remain cyclic and, therefore, their conjugate momenta are conserved. These momenta are

pψ =
∂L

∂ψ̇
= I3(φ̇ cos θ + ψ̇) ,

pφ =
∂L

∂φ̇
= (I ′1 sin2 θ + I3 cos2 θ)φ̇+ I3ψ̇ cos θ .

One can see that pψ and pψ coincide with the components of the angular momentum L3 (in the
rotation frame) and LZ (in the stationary frame), respectively. Indeed, from (I.2.59) we get the
components of the angular momentum ~L in the moving frame

L1 = I ′1ω1 = I ′1(φ̇ sin θ sinψ + θ̇ cosψ) ,

L2 = I ′1ω2 = I ′1(φ̇ sin θ cosψ − θ̇ sinψ) ,

L3 = I3ω3 = I3(φ̇ cos θ + ψ̇) .

(I.2.70)

Therefore,

pψ = L3 (I.2.71)

By using (I.2.57), we find the component LZ of the angular momentum in the stationary frame
through its components (L1, L2, L3) in the rotating frame

LZ = L1 sin θ sinψ + L2 sin θ cosψ + L3 cos θ .

Upon substituting here (I.2.70), we find that

pφ = LZ . (I.2.72)

Of course, conservation of LZ and L3 also follows from Noether’s theorem. Lagrangian (I.2.69)
is invariant under infinitesimal constant rotations δφ = ε and δψ = ε, so that the corresponding
components of the angular momentum, Lz and L3 must be conserved.

In addition to L3 and LZ , there is on more conserved quantity is the energy

E =
I ′1
2

(θ̇2 + φ̇2 sin2 θ) +
I3
2

(φ̇ cos θ + ψ̇)2 +Mgl cos θ . (I.2.73)

Thus, Lagrange’s top has three integrals of motion (LZ , L3, E) and nor we use them to solve the
equations of motion.

From (I.2.71) and (I.2.72) we the find

φ̇ =
LZ − L3 cos θ

I ′1 sin2 θ
,

ψ̇ =
L3

I3
− cos θ

LZ − L3 cos θ

I ′1 sin2 θ
.

(I.2.74)

Substituting these expressions in the formula for the energy, we obtain the one-dimensional problem

E′ =
I ′1
2
θ̇2 + Ueff(θ) , (I.2.75)

where we have introduced

E′ = E − L2
3

2I3
, Ueff =

(LZ − L3 cos θ)2

2I ′1 sin2 θ
+Mgl cos θ .
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Figure 2.12: The possible shapes for the locus of the top axis on the unit sphere with center at the
apex of the top. The axis monotonically precesses around the vertical and simultaneously nutates
up and down.

Expressing from (I.2.75) the variable θ̇ and separating the variables, we find

t =

∫
dθ√

2
I′1

(E′ − Ueff(θ))
. (I.2.76)

It is not so difficult to understand quantitatively some general features of the motion of Lagrange’s
top. To this end, we rewrite (I.2.75) as

I ′1
2
θ̇2 = E′ − (LZ − L3 cos θ)2

2I ′1 sin2 θ
−Mgl cos θ .

Introducing a new variable x = cos θ, the last equation can be written in the form

(I ′1)2ẋ2 = 2I ′1E
′(1− x2)− (LZ − L3x)2 − 2I ′1Mgl(x− x3) . (I.2.77)

On the right hand side we have a cubic polynomial, which is negative for both x = 1 and x = −1 and
it tends to +∞ for x→ +∞. For some real values of x between −1 and 1 the cubic polynomial must
be positive because the left hand side of equation (I.2.77) is positive. Thus, the polynomial should
have two real roots in between −1 and 1, the third root is also real and bigger than 1. If we order two
real roots x1 = cos θ1 and x2 = cos θ2 between 1 and −1 as x1 > x2, then they define two turning
points θ1 < θ2, so that θ oscillates between θ1 and θ2. Under these oscillations the sign of φ̇ remains
constant or changes, depending on the behaviour of the sign on the difference LZ − L3 cos θ. In the
first case the axis of the top precesses around the vertical monotonically, simultaneously performing
nutation up and down, see Fig. 2.12, first picture. In the second case the direction of precession is
opposite at two turning points, so that the top axis moves by making loops, see the second picture
of Fig. 2.12. Finally, if one of θ1, θ2 coincides with zero of LZ −L3 cos θ, then on the corresponding
limiting circle ϕ̇ and θ̇ turn to zero simultaneously, so that the axis describes the trajectory as in
the third picture of Fig. 2.12.

The integral (I.2.76) can be computed in terms of the Weierstrass elliptic function ℘. Further,
making a substitution

x(t) =
2I ′1
Mgl

z(t) +
2E′I ′1 + L2

3

6I ′1Mgl
,

we bring (I.2.77) to the form

ż2 = 4z3 − g2z − g3 , (I.2.78)

where

g2 =
1

12I ′1

(
(2E′I1 + L2

3)2 − 12I ′1L3LZMgl + 12(I ′1Mgl)2
)

78



g3 =
1

216I ′1

(
(2E′I1 + L2

3)3 − 18I ′1L3LZ(2E′I1 + L2
3)Mlg + 18(I ′1Mgl)2(L2

3 + 3L2
Z − 4E′I ′1)

)
.

Equation (I.2.78) is nothing else but the differential equation satisfied by the Weierstrass elliptic
function

℘̇2 = 4℘3 − g2℘− g3 , (I.2.79)

so that the general solution is z = ℘(t+ δ), where δ is an integration constant. Thus,

cos θ(t) =
2I ′1
Mgl

℘(t+ δ) +
2E′I ′1 + L2

3

6I ′1Mgl
.

2.5 Motion in noninertial system

Here we would like to address a general question how the equations of motion look like in a noninertial
coordinate system. As a starting point we can again employ the principle of the least action which
applicability is not restricted by any choice of the coordinate system. This principle implies the
Euler-Lagrange equations

d

dt

∂L

∂~v
− ∂L

∂~v
= 0.

However, now the lagrangian will be different from the lagrangian in an inertial system k where the
latter for a single particle has the form

Linert =
m~v2

2
− U , ~v =

d~r

dt
, (I.2.80)

where we decided to denote the quantities related to the inertial frame k by gothic letters. We
transform Linert into a noninertial frame in two steps.

First we introduce a noninertial frame K ′ which performs with respect to k a translational motion
with velocity ~V (t). Then the velocity of a particle in k and K ′ are related as

~v = ~v′ + ~V (t) .

Substituting this into Linert, we get

L =
m~v′2

2
+m(~v′, ~V ) +

m

2
~V 2 − U .

Here ~V 2(t) is some given function of time, it can be represented as a total time derivative of some
other function and, therefore, the third term in the expression above can be thrown away. Next, we
have

m~v′ · ~V = m
(d~r′
dt
, ~V
)

= −m
(
~r′,

d~V

dt

)
+
d

dt
(m~r′, ~V ) .

Omitting here the last term which is also the total time derivative, we get the following lagrangian

L =
m~v′2

2
−m( ~W,~r′)− U , (I.2.81)

where ~W = d~V
dt is an acceleration of the translational motion of K ′. From this lagrangian we derive

the following Euler-Lagrange equation

m
d~v′

dt
= −∂U

∂~r′
−m ~W (t) = ~F −m ~W (t) . (I.2.82)
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Thus, the influence of translational motion of the coordinate system leads to an appearance of an
additional homogenous force field −m ~W , where ~W is the acceleration of the origin of the coordinate
system K ′. This force is called the inertial force of translations and it is directed opposite to ~W .

Example. At the moment of takeoff, a rocket has acceleration r̈ directed upward. Thus, the co-
ordinate system K ′ connected to the rocket is not inertial, and an observer inside can detect the
existence of a force field mW and measure the inertial force, for example, by means of weighted
springs. In this case the inertial force is called overload.

Example. When jumping from a loft, a person has acceleration g, directed downwards. Thus, the
sum of the inertial force and the force of gravity is equal to zero: weighted springs show that the
weight of any object is equal to zero, so such a state is called weightlessness. In exactly the same
way, weightlessness is observed in the free ballistic flight of a satellite since the force of inertia is
opposite to the gravitational force of the Earth.

As the second step, we introduce one more coordinate system K, which has the common origin with
K ′ but rotates with respect to K with angular velocity ~ω(t). The velocity ~v′ of the particle with
respect to K is the sum of its velocity ~v with respect to K ′ and the transferred velocity ~ω × ~r of its
rotation with the system K

~v′ = ~v + ~ω × ~r ,
where we have taken into account that ~r′ and ~r in the systems K ′ and K coincide. Substituting this
into (I.2.81), we get

L =
m~v2

2
+m(~v, ~ω × ~r) +

m

2
(~ω × ~r, ~ω × ~r)−m( ~W,~r)− U . (I.2.83)

This is the general form of the lagrangian of a particle in an arbitrary noninertial frame. We then
derive the Euler-Lagrange equations

d

dt
(m~v +m~ω × ~r)−

(
m~v × ~ω −m~ω × (~ω × ~r)−m ~W − ∂U

∂r

)
= 0 .

These equations are then brought to the form of Newton’s equations

m
d~v

dt
= ~F −m ~W −m~̇ω × ~r − 2m~ω × ~v −m~ω × (~ω × ~r) . (I.2.84)

Thus, the effect of rotation brings three new force fields which have the following names

1) the inertial force of rotation: −m~̇ω × ~r;

2) the Coriolis force: −2m~ω × ~v;

3) the centrifugal force: −m~ω × (~ω × ~r).

The last two forces are present for uniform rotation. The Coriolis force is different from other forces
considered so far that it depends on particle velocity. The centrifugal force It lies in the plane passing
through ~ω and ~r and is perpendicular to the rotation axis (i.e. the direction of ~ω) and is directed
away from the axis. Quantitatively, this force is equal to mρω2, where ρ is the distance from the
particle to the rotation axis.

Consider separately the case of a uniformly rotating system which does not have translational ac-
celeration. Putting in (I.2.85) ~ω = const and ~W = 0, one gets the lagrangian

L =
m~v2

2
+m(~v, ~ω × ~r) +

m

2
(~ω × ~r, ~ω × ~r)− U (I.2.85)
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and the Euler-Lagrange equations

m
d~v

dt
= ~F − 2m~ω × ~v −m~ω × (~ω × ~r) . (I.2.86)

Compute the energy of the particle in this case. We have the canonical momentum

~p =
∂L

∂~v
= m~v +m~ω × ~r .

Substituting it in the expression for the energy E = ~p~̇v − L, we find

E =
m~v2

2
− m

2
(~ω × ~r)2 + U .

The energy does not contain the term linear in velocity. The effect of rotation boils down to adding
a term depending on coordinates of a particle and proportional to the square of the angular velocity.
This additional energy −m2 (~ω × ~r)2 is called centrifugal.

2.6 Hamiltonian mechanics

Formulation of the lagrangian mechanics assumes the description of a mechanical system by speci-
fying its generalised coordinates and velocities. Such a description is not the only possible one. In
many cases, especially for study general questions of mechanics, it is more convenient to describe
a system with the help of generalised coordinated and momenta. The corresponding description is
known as hamiltonian formalism.

To develop a certain culture of working with indices in the situations when the metric is not euclidean,
in this section we use for coordinates the standard notation where they come with upper indices,
while the corresponding momenta (co-vectors) naturally carry the lower indices. Of course, for the
euclidean metric on the phase space there is no distinction between upper and lower indices.

2.6.1 Hamilton’s equations

The main object of the hamiltonian description of mechanics is hamiltonian H, which is the energy
of the system expressed in terms of canonical (generalised) coordinates and momenta, H(p, q) ≡
H(pj , qj). For a system with n degrees of freedom, instead of the n second-order Euler-Lagrange
equations, in the hamiltonian formalism one has 2n first-order differential equations for the canonical
coordinates and momenta which have the following remarkably symmetrical form

q̇j =
∂H

∂pj
,

ṗj = −∂H
∂qj

.

(I.2.87)

These are Hamilton’s equations. Because of their beauty and symmetry these equations are called
canonical equations of mechanics, and the variables - coordinates and momenta - canonical variables.
Here the function H(pj , qj) is related to the Lagrangian of the system by the so-called Legendre
transformation

H(p, q) =

n∑

j=1

pj q̇j − L(q, q̇, t)
∣∣∣
q̇i→pi

, pi =
∂L

∂q̇i
. (I.2.88)
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This means that we have to invert the equations pi = ∂L
∂q̇i

and obtain q̇i = q̇i(p, q) and then substitute
these expressions for the velocities into the Legendre transform, obtaining thereby the Hamiltonian
as a function of the canonical coordinates and momenta.

The Hamilton’s equations can be obtained starting form the lagrangian description. as follows. We
take the full differential of the lagrangian17

dL =
∂L

∂qi
dqi +

∂L

∂q̇i
dq̇i = ṗidqi + pidq̇i = ṗidqi + d(piq̇i)− q̇idpi ,

where we have used the definition of the canonical momentum and the Euler-Lagrange equations.
From here we find

d(piq̇i − L) = q̇idpi − ṗidqi . (I.2.89)

Defining the hamiltonian by means of the Legendre transform

H(p, q) = piq̇i − L(q, q̇)
∣∣∣
q̇i→pi

,

we then deduce from (I.2.89) that the differential of the hamiltonian considered as the function of
pi and qi reads as

dH = q̇idpi − ṗidqi .
From this expression, the differential Hamilton’s equations (I.2.87) follow. The inverse Legendre
transform allows one to reconstruct the lagrangian from a given hamiltonian and, therefore, in the
non-singular situation18 these descriptions are perfectly equivalent.

The total derivative of the hamiltonian reads

dH

dt
=
∂H

∂t
+

n∑

i=1

∂H

∂qi
q̇i +

n∑

i=1

∂H

∂pi
ṗi .

Substituting here q̇i and ṗi from equations (I.2.87), we see that the last two terms cancel and we get

dH

dt
=
∂H

∂t
.

In particular, if the hamiltonian does not explicitly depends on time, then dH/dt = 0 and we again
obtain the conservation law of energy.

Hamilton’s equations can also be obtained by means of the variational principle. The corresponding
action has the form

S[p, q] =

∫ t2

t1

(
piq̇

i −H(p, q)
)
dt . (I.2.90)

Varying this action with respect to p and q, considered as independent variables, one obtains the
hamiltonian equations.

Example. Newtonian mechanics. We start form the following lagrangian for a system on N particles
interacting by means of potential forces

L =

N∑

i=1

mi~v
2
i

2
− U(~r1, . . . , ~rN ) .

17To simplify our consideration, we use here Einstein’s convention for the summation of indices.
18A singular situation arises when one cannot solve equations pi = ∂L

∂q̇i
. In this case one has to modify the

hamiltonian formalism, how to do this was explained by P.M. Dirac. The corresponding discussion goes beyond the
scope of the present course.
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The canonical momenta are

~pi =
∂L

∂~vi
= mi~vi → ~vi =

~pi
mi

,

so that for the corresponding hamiltonian we find

H =

N∑

i=1

~pi · ~vi − L =

N∑

i=1

~p2
i

2mi
+ U(~r1, . . . , ~rN ) = T + U .

Hamilton’s equations are

~̇ri =
∂H

∂~pi
=

~pi
mi

,

~̇pi = −∂H
∂~ri

= −∂U
∂~ri

.

These equations are equivalent to Newton’s equations. Indeed, we differentiate the first equation
over t, multiply it by mi and use the second equation to get

mi~̈ri = ~̇pi = −∂U
∂~ri

= ~Fi ,

which are nothing else but Newton’s equations.

Hamilton’s equations can be represented in the form of a single equation. Introduce two 2n-
dimensional vectors

~x =

(
q
p

)
, ~∇H =

(
∂H
∂qj
∂H
∂pj

)
(I.2.91)

and 2n× 2n matrix J :

J =

(
0 −1
1 0

)
, (I.2.92)

where 1 is the n× n unit matrix. Then (I.2.87) are concisely written as

~̇x = −J · ~∇H , or J · ~̇x = ~∇H . (I.2.93)

In this form the Hamiltonian equations were written for the first time by Lagrange in 1808.

The vector x = (x1, . . . , x2n) defines a state of a dynamical system in classical mechanics. The
set of all states forms the phase space P = {x} of the system which in the present case is the

2n-dimensional space with the euclidean metric (x, y) =
2n∑
i=1

xiyi. Solving Hamilton’s equations with

given initial conditions (p0, q0) representing a point in the phase space, we obtain a phase space
curve

p ≡ p(t; p0, q0) , q ≡ q(t; p0, q0)

passing through this point. As follows from the uniqueness theorem for ordinary differential equa-
tions, there is one and only one phase space curve through every phase space point. The tangent
vector to the phase space curve is called the phase velocity vector or the Hamiltonian vector field.
By construction, it is determined by the Hamiltonian equations. The phase curve can consist of
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p

q

Stationary point
H = const � Energy levels

Figure 2.13: Phase space trajectories of the harmonic oscillator.

only one point. Such a point is called an equilibrium position. The Hamiltonian vector field at an
equilibrium position vanishes.

Example. Phase space of the one-dimensional harmonic oscillator. To get more familiar with the
concept of a phase space, consider as an example the one-dimensional the harmonic oscillator. The
potential is U(q) = mω2

2 q2. The Hamiltonian

H =
p2

2m
+
mω2

2
q2 .

Hamilton’s equations of motion are given by ordinary differential equations:

q̇ =
p

m
, ṗ = −mω2 q =⇒ q̈ = −ω2 q .

The law of conservation of energy allows one to find the phase curves easily. On each phase curve
the value of the total energy E = H is constant. Therefore, each phase curve lies entirely in one
energy level set H(p, q) = h. For the harmonic oscillator

p2

2m
+
mω2

2
q2 = h → p2

2mh
+

q2

2h
mω2

= 1 .

and the phase space curves are ellipses and the origin, see Fig. 2.13. The Hamiltonian vector field is

XH = q̇
∂

∂q
+ ṗ

∂

∂p
=

p

m

∂

∂q
−mω2 q

∂

∂p
, XH ·H = 0 .

2.6.2 Poisson brackets

Let F(P) be the space of smooth real-valued functions on P. This space carries the structure of an
algebra with respect to the point-wise multiplication and its elements are called observables. Using
the matrix J , one can define on F(P) the following Poisson bracket

{f, g}(x) = J ij∂if∂jg =

n∑

i=1

(
∂f

∂pi

∂g

∂qi
− ∂f

∂qi

∂g

∂pi

)
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for any f, g ∈ F(P). The Poisson bracket is a map F(P)×F(P)→ F(P) which has the following
properties

1) Linearity {f + αh, g} = {f, g}+ α{h, g} ;

2) Skew-symmetry {f, g} = −{g, f} ;

3) Jacobi identity {f, {g, h}}+ {g, {h, f}}+ {h, {f, g}} = 0;

4) Leibniz rule {f, gh} = {f, g}h+ g{f, h}

for arbitrary functions f, g, h ∈ F(P) and α ∈ R. The first three properties imply that the Poisson
bracket introduces on F(P) the structure of an infinite-dimensional Lie algebra, while the Leibniz
rule expresses the compatibility of the bracket with multiplication in F(P). Due to this rule, the
bracket is fully determined by its values on the coordinate functions xi for which {xi, xj} = J ij or,
explicitly,

{qi, qj} = 0 , {pi, pj} = 0 , {pi, qj} = δij . (I.2.94)

Using the Poisson bracket, Hamilton’s equations for the coordinate functions can be rephrased in
the following concise form

ẋj = {H,xj} ⇔ ẋ = {H,x} = XH · x ,

where XH is the hamiltonian vector field. As a consequence, evolution of any function f = f(q, p, t)
on the phase space is governed by the equation

df

dt
=
∂f

∂t
+ {H, f} .

In particular, if f does not explicitly depend in time,

df

dt
= {H, f} = XH · f .

Due to the skew-symmetry property of the Poisson bracket, this form of Hamilton’s equations makes
the conservation law for H obvious

dH

dt
= {H,H} = 0 .

It follows from Jacobi identity that the Poisson bracket of two integrals of motion is again an integral
of motion (Poisson theorem). The Leibniz rule implies that a product of two integrals of motion is
also an integral of motion. The algebra of integrals of motion represents an important characteristic
of a Hamiltonian system and it is closely related to the existence of a symmetry group.

Poisson manifolds. The phase space is not always Euclidean R2n. The generic situation is that
the phase space is a manifold and the the Poisson tensor J is different from (I.2.92). The properties
1)−4) provide a general definition of the Poisson bracket for an arbitrary smooth manifold P. Any
Poisson bracket is described by a skew-symmetric tensor J on P satisfying the Jacoby identity. In
local coordinates this identity takes the form

∑

(i,l,m)

J ik∂kJ
lm = 0 ,

where the sum is over the cyclic permutation of indices. A manifold endowed with a Poisson bracket
is called Poisson.
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In general, the rank r of the matrix J is less than or equal to the dimension dim P of a manifold
and it might change from point to point. In the case when r = dim P at every point, the matrix J
is invertible and the corresponding Poisson bracket is called non-degenerate. This is only possible if
dim P is even. Indeed, since J t = −J , one has

detJ = det(−J) = (−1)dim PdetJ ,

so that (−1)dim P = 1 since detJ 6= 0.

Example (optional). As a non-trivial example of the hamiltonian dynamics we consider the motion
of a rigid body. Starting from the rigid body lagrangian

L =
1

2
Tr(IS2) , S = B−1Ḃ ,

see (I.2.65), we derive the Poisson structure and Hamilton’s equations, as well as verify that they
are perfectly match our findings in the lagrangian approach. We start with computing the canonical
momentum

Pji =
∂L

∂Ḃij
=

1

2

∂L

∂Ḃij

(
IB−1ḂB−1Ḃ

)
kk

=
1

2
(B−1ḂIB−1)ji +

1

2
(IB−1ḂB−1)ji .

Here, by definition, we understand Pji as the canonical momentum conjugate to the coordinate Bij .
The above formula for the canonical momentum can be written in the matrix form

P =
1

2
(SI + IS)B−1 , (I.2.95)

so that

PB =
1

2

(
SI + IS

)
= Λ , (I.2.96)

where Λ is the angular momentum in the moving frame, cf. (I.2.66). By using the Legendre
transform, we determine the hamiltonian

H = PijḂji − L = Tr(PḂ)− 1

2
Tr(IS2) = Tr(PḂ)− 1

4
Tr(IS + SI)S

= Tr(PḂ)− 1

2
Tr(ΛS) = Tr(PḂ)− 1

2
Tr(PBS) =

1

2
Tr(PḂ) ,

where we have used (I.2.96). The hamiltonian appears to coincide with the lagrangian because the
lagrangian is just the kinetic energy. This is not yet the final answer because we still have to express
H in terms of coordinates and momenta. To solve for Ḃ in terms of P , we write (I.2.96) in the
matrix form

2(PB)ij = (SI + IS)ij = SijIj + IiSij = (Ii + Ij)Sij ,

from where we find

Sij = (B−1Ḃ)ij =
2(PB)ij
Ii + Ij

=
2Λij
Ii + Ij

. (I.2.97)

Thus, the hamiltonian is the following function of the canonical coordinates and momenta

H =
1

2
(PB)ijSji =

∑

ij

(PB)ij(PB)ji
Ii + Ij

. (I.2.98)
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Determination of the Poisson structure between the canonical variables is not straightforward. This
is because we deal with a constrained system. Although we do not use the method of lagrangian
multipliers, we should have in mind the orthogonality constraint

C1 = BtB − 1 = 0 . (I.2.99)

Differentiating this constraint in time,

Ċ1 = ḂtB +BtḂ = (BtḂ)t +BtḂ = (B−1Ḃ)t +B−1Ḃ = St + S .

Thus, if we want to keep C1 = 0 for all the times, we have to impose a condition St+S = 0 meaning
that S should be a skew-symmetric matrix. Then, definition (I.2.96) of the canonical momentum
leads to another hamiltonian constraint

C2 = (PB)t + PB = 0 . (I.2.100)

This constraint implies that not all the components of the canonical momentum are independent,
rather from (I.2.100) together with (I.2.99) one gets that

P t = −BPB .

Note by passing that the above relation also implies that

(BP )t +BP = 0 . (I.2.101)

No new constraints further arise; if we differentiate C2 then the corresponding equation will be
satisfied due to the equations of motion.

It is now clear that the Poisson bracket between the conjugate coordinates and momenta cannot be
the canonical bracket {Pij , Bkl} = δilδkl, as the latter is not compatible with constraints (I.2.99)
and (I.2.100). An educated guess for the Poisson bracket compatible with constraints is

{Bij , Bkl} = 0 ,

{Pij , Bkl} = 1
2

(
δilδjk −BkiBjl

)
,

{Pij , Pkl} = 1
2

(
δik(BP )jl − δjl(PB)ik

)
.

(I.2.102)

At the end of this example we provide (in small print) a straightforward verification of the Jacobi
identity, as well as show the compatibility of (I.2.102) with constraints (I.2.99) and (I.2.100). One
way to derive (I.2.102) from the canonical Poisson bracket {Pij , Bkl} = δilδkl is to use the Dirac
bracket construction known in the theory of constrained hamiltonian systems. Another way is to
note that (I.2.102) is equivalent to the canonical Poisson structure of the cotangent bundle T∗SO(n)
of the orthogonal group SO(n).

More generally, the cotangent bundle T∗G to a Lie group G is a manifold isomorphic to the product
T∗G ' G × g∗, where g∗ is the dual space to the Lie algebra g of G. If the space g is supplied
with a non-degenerate bilinear form, we can use this form to identify g∗ with g: g∗ ' g, so that
the cotangent bundle is isomorphic to G × g. As such, it can be parametrised by elements (g, `),
where g ∈ G and ` ∈ g. Matrix elements of the defining representations of G in GL(n,C) and
g in Mat(n,C) can be regarded as coordinate functions on the cotangent bundle; we denote these
coordinate functions as gij and `ij , respectively, where i, j = 1, . . . , n. Finally, the cotangent bundle
of G is a Poisson manifold with the following Poisson bracket which we write as the set of brackets
between the coordinate functions

{g1, g2} = 0 ,

{`1, g2} = g2C12 ,

{`1, `2} = [C12, `1] = 1
2 [C12, `1 − `2] .

(I.2.103)
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Here subscript 1 and 2 stands as a concise notation for the matrix indices ij and kl, respectively,
and C12 ∈ g⊗g is the so-called split Casimir. For any A ∈ g the spilt Casimir has the property that

A1 = Tr2C12A2 , (I.2.104)

which in components means Aij = Cij,klAlk, i.e. C is the identity operator in g.

Now we specify the group G and the Poisson structure of its cotangent bundle to the case of interest
G = SO(n). For the orthogonal group the corresponding split Casimir is

Cij,kl =
1

2
(δilδjk − δikδjl) .

It is skew-symmetric with respect to the interchange i ↔ j and separately with respect to k ↔ l
and it fulfils (I.2.104) for any skew-symmetric matrix A. For the Poisson structure (I.2.103) we then
find in components

{gij , gkl} = 0 ,

{`ij , gkl} = gkmCij,ml = 1
2

(
δilgkj − δjlgki

)
,

{`ij , `kl} = Cim,kl`mj − `imCmj,kl = 1
2 (δil`kj − δik`lj − δjk`il + δjl`ik) .

(I.2.105)

Now one can verify that with an identification

g = B , ` = PB = Λ (I.2.106)

the Poisson structure (I.2.102) for B and P precisely yields the structure (I.2.105) for g and `. To
prove this result, upon evaluation of the brackets by the Leibniz rule one has to use the constraints
(I.2.99) and (I.2.100). This shows that a generalised Euler’s top can be understood as a dynamical
system on the cotangent bundle of the orthogonal group SO(n). The structure (I.2.103) is called
the Poisson structure in the left parametrisation. The right parametrisation amounts to replacing `
with an element

m = g`g−1 = B(PB)B−1 = BP = BΛB−1 = J ,

which physically coincide with the angular momentum in the stationary frame, see (I.2.68). By
using either (I.2.102) or (I.2.103), one can show that angular momenta in the moving and stationary
frames Poisson commute {`ij ,mkl} = {Λij , Jkl} = 0.

Let us now derive Hamilton’s equations. We have

Ḃij = {H,Bij} =
∑

l

Bil
(PB)lj
Ij + Il

=
∑

l

BilSlj = (BS)ij ,

where we have used (I.2.99) and (I.2.100). Note that the result we obtained agrees with our original
definition of S as S = B−1Ḃ. Analogously,

Ṗij = {H,Pij} = −
∑

l

(PB)ik
Ik + Ii

Pkj = −(SP )ij ,

where again (I.2.99) and (I.2.100) have been used. Hence, Hamilton’s equations written in the matrix
form are

Ḃ = BS , Ṗ = −SP , (I.2.107)

where S is understood as the matrix with entries given by (I.2.97). We can now find the evolution
equation for Λ = PB

Λ̇ = ṖB + PḂ = −SPB + PBS = −SΛ + ΛS = −[S,Λ] ,
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which obviously coincide with (I.2.67) found from the lagrangian approach.

Now we make the following interesting observation. According to the last line in (I.2.105), the
Poisson bracket between the components of Λ is closed

{Λij ,Λkl} = 1
2 (δilΛkj − δikΛlj − δkjΛil + δjlΛik) . (I.2.108)

The matrix Λ is skew-symmetric and the above relations coincide with the defining relations of the
Lie algebra so(n) for the case of general n. The hamiltonian can also be expressed via Λ only

H =
∑

ij

ΛijΛji
Ii + Ij

=
∑

i 6=j

ΛijΛji
Ii + Ij

. (I.2.109)

Note that the actual summation here runs over i 6= j because Λii = 0.19 Now we can also show that
Euler’s equations are hamiltonian with respect to the Poisson structure (I.2.108) and hamiltonian
(I.2.109). Indeed,

Λ̇kl = {H,Λkl} = 2
∑

ij

Λji
Ii + Ij

{Λij ,Λkl} =
∑

ij

Λji
Ii + Ij

(δilΛkj − δikΛlj − δkjΛil + δjlΛik)

=
∑

j

Λkj
2Λjl
Il + Ij

−
∑

i

2Λki
Ii + Ik

Λil = (ΛS)kl − (SΛ)kl .

An algebraic variety generated by the matrix elements Λij of a skew-symmetric matrix Λ supplied
with the Poisson bracket (I.2.108) also gives an example of Poisson manifold. This manifold is
the dual space g∗ to the Lie algebra g and the corresponding Poisson bracket (I.2.108) is the so-
called Kirillov-Kostant bracket. In opposite the canonical bracket on the cotangent bundle, bracket
(I.2.108) is degenerate and has Ck = TrΛk as Casimir functions.
For the reader who is not familiar with the notion of the cotangent bundle and its Poisson structure, here we proved the
proof of the Jacobi identity for the Poisson brackets (I.2.102) by straightforward calculation. Because of the structure of
the brackets, the Jacobi identities involving three B or two B and one P are trivially satisfied. The first non-trivial Jacobi
identity is

{{Pij , Pkl}, Bmn}+ {{Pkl, Bmn}, Pij}+ {{Bmn, Pij}, Pkl} = 0 .

We then compute the brackets involved here one by one. We start with

{{Pij , Pkl}, Bmn} = {δik(BP )jl − δjl(PB)ik, Bmn} = δisBjs{Psl, Bmn} − δjl{Pis, Bmn}Bsk
= δikBjs(δsnδlm − BmsBln)− δjl(δinδms − BmiBsn)Bsk

= δikδlmBjn − δikδjmBln − δjlδinBmk + δjlδnkBmi ,

where constraint (I.2.99) has been implemented. next,

{{Pkl, Bmn}, Pij} = {δknδml − BmkBln, Pij} = {Pij , Bmk}Bln + Bmk{Pij , Bln}
= (δikδjm − BmiBjk)Bln + Bmk(δinδjl − BliBjn) .

Analogously,

{{Bmn, Pij}, Pkl} = −(δkiδmlBjn − BmkBliBjn)− Bmi(δknδjl − BjkBln) .

Now adding up these three pieces we obtain zero, i.e. the Jacobi identity at hand is satisfied.

The last Jacobi identity to check is

{{Pij , Pkl}, Pmn}+ {{Pmn, Pij}, Pkl}+ {{Pkl, Pmn}, Pij} = 0 .

We have

{{Pij , Pkl}, Pmn} = {δik(BP )jl − δjl(PB)ik, Pmn}

19For the usual case when i, j, k = 1, 2, 3 one has Ii+Ij = −Ik < 0, where k 6= i and k 6= j. Since ΛijΛji = −Λ2
ij < 0,

the hamiltonian H is positive-definite.
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= δik{Bjs, Pmn}Psl + δikBjs{Psl, Pmn} − δjl{Pis, Pmn}Bsk − δjlPis{Bsk, Pmn}
= −δik(δmsδnj − BjmBns)Psl + δikBjs(δsm(BP )ln − δln(PB)sn)

−δjl(δim(BP )sn − δsn(PB)im)Bsk + δjlPis(δmkδns − BsmBnk) .

Hence, we get

{{Pij , Pkl}, Pmn} = −δikδnjPml +((((
((hhhhhhδikBjm(BP )nl +((((

((hhhhhhδikBjm(BP )ln + δikδlnPmj

= −δjlδimPkn +((((
((

δjl(PB)imBnk + δjlδmkPin −((((
((

δjl(PB)imBnk ,

where the cancellation on the first line happen due to the constraint (I.2.101). Thus,

{{Pij , Pkl}, Pmn} = −δikδnjPml + δikδlnPmj − δjlδimPkn + δjlδmkPin .

Making here the cyclic permutations of pairs of indices we get the other two terms in the left hand side of the Jacobi identity
and adding all them up we find zero. Thus, we conclude that on the constraint surface given by equations (I.2.99) and
(I.2.100), the Jacobi identity is satisfied.

Now we check the compatibility of constraints with the Poisson structure. To this end, we compute the Poisson brackets of
the constraints (I.2.99) and (I.2.100) with coordinates and momenta and show that on the constraint surface given by (I.2.99)
and (I.2.100) these brackets vanish. We start with (I.2.99) and notice that its Poisson bracket with Bij trivially vanishes.
Then, we have to compute

{(BtB)ij , Pkl} = {BsiBsj , Pkl} = −{Pkl, Bsi}Bsj − Bsi{Pkl, Bsj}
= −(δkiδls − BskBli)Bsj − Bsi(δkjδls − BskBlj)
= −δki + δkjBli − δkjBli + δikBlj = 0 ,

where constraint (I.2.99) have been used. Next, we look at the brackets of (I.2.100). First,

{(PB)ij + (PB)ji, Bkl} = {Pis, Bkl}Bsj + i↔ j = (δilδks − BkiBsl)Bsj + i↔ j

= δilBkj − δljBki + δjlBki − δliBkj = 0 .

Second,

{(PB)ij + (PB)ji, Pkl} = {Pis, Pkl}Bsj + Pis{Bsj , Pkl}+ i↔ j

= (δik(BP )sl − δsl(PB)ik)Bsj − Pis(δkjδsl − BskBlj) + i↔ j

= δikPjl −((((((PB)ikBlj − Pilδkj +((((
((PB)ikBlj + i↔ j = 0 .

This completes the proof of compatibility of the constraints with the Poisson structure.

2.6.3 Canonical transformations

Consider a generic change of coordinates on a phase space

Qi = Qi(q, p, t) , Pi = Pi(q, p, t) (I.2.110)

and ask which of these transformations preserve the form (I.2.87) of Hamilton’s equations with a
new hamiltonian H ′ = H ′(P,Q), that is

Q̇i =
∂H ′

∂Pi
, Ṗi = −∂H

′

∂Qi
.

To derive the transformations that preserve the form of Hamilton’s equations, we can appeal to the
variational principle according to which Hamilton’s equations are obtained as

δ

∫
(pidqi −Hdt) = 0 ,

where the independent variables to vary are coordinates qi and momenta pi. In order for new
variables Pi, Qi to also satisfy Hamilton’s equations, they must also obey the principle of the least
action

δ

∫
(PidQi −H ′dt) = 0 .
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The equivalence of two variational proinciples can be achieved provided the difference between the
integrands is a total differential of an arbitrary function F of coordinates, momenta and time

pidqi −Hdt = PidQi −H ′dt+ dF .

Transformations satisfying this property are called canonical.20 Any canonical transformation is
characterised by its function F , called the generating function of canonical transformation. Rewriting
the last relation in the form

dF = pidqi − PidQi + (H ′ −H)dt , (I.2.111)

one sees that

pi =
∂F

∂qi
, Pi = − ∂F

∂Qi
, H ′ = H +

∂F

∂t
, (I.2.112)

where F is considered as a function of and and new coordinates and time: F = F (q,Q, t). Equation

pi =
∂F

∂qi
(q,Q, t) (I.2.113)

should yield Qi = Qi(p, q, t), i.e. to express the new coordinates in terms of the old coordinates and
momenta.21 Substituting these esperssions for Qi into the equation for Pi

Pi = − ∂F

∂Qi
(q,Q(p, q), t) , (I.2.114)

we obtain Pi = Pi(p, q, t), i.e. the expression for the new momenta in terms of old coordinates and
momenta. This would give the canonical transformation generated by a function F = F (q,Q) in the
form (I.2.110).

It might be convenient to express the generating function not via q and Q, but rather via q and P .
For that one needs to rewrite (I.2.111) in the form

d(F + PiQi) = pidqi +QidPi + (H ′ −H)dt .

On the left hand side under the differential one has a new generating function Φ = F + PiQi =
Φ(q, P, t) and the last relation implies that

pi =
∂Φ

∂qi
, Qi =

∂Φ

∂Pi
, H ′ = H +

∂Φ

∂t
.

Analogously, one can obtain the formulae for canonical transformations expressed via generating
functions depending on p and Q, or on p and P . If any of these generating functions does not
depend on t explicitly, H ′ = H, in other words, to get H ′ one needs to substitute in H(p, q) the
variables p and q expressed via P and Q.

Example. Consider a system with one degree of freedom and the phase space (p, q). Consider a
family of transformations which has a form of rotation on the phase plane by an angle α

Q = cosα q + sinαp , P = − sinα q + cosαp . (I.2.115)
20Note that Hamilton’s equations also preserve their form if the integrands are different by a constant multiplier.

An example is given by transformations of the form Pi = api, Qi = qi, H′ = aH.
21This can only be done if D(p1,...,pn)

D(Q1,...,Qn)
= || ∂2F

∂qi∂Qj
|| 6= 0.
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We show that these transformations are canonical by finding the corresponding generating function.
From the expression for Q we find p = p(q,Q) and then substituting the result into the equation for
P , we find P = P (q,Q). Explicitly,

p =
Q

sinα
− cosα

sinα
q ,

P =
cosα

sinα
Q− q

sinα
.

Thus, according to (I.2.112), the generating function must be found from the system of equations

∂F

∂q
=

Q

sinα
− cosα

sinα
q ,

∂F

∂Q
= −cosα

sinα
Q+

q

sinα
.

Integrating the first equation, we obtain

F =
Qq

sinα
− cosα

sinα

q2

2
+ f(Q) ,

where f(Q) is yet an unknown function of Q. Substituting this result into the second equation gives

f ′(Q) = −cosα

sinα
Q , ⇒ f(Q) = −cosα

sinα

Q2

2
.

Hence, for the generating function we find the following result

F =
Qq

sinα
− cosα

sinα

q2

2
− cosα

sinα

Q2

2
.

Note that for α = 0 this expression is divergent. Note that an arbitrary transformation (I.2.110)
may not be canonical, to be canonical there must exist a generating function, for instance the one
satisfying the system of differential equations

∂F

∂qi
= pi ,

∂F

∂Qi
= −Pi .

For a number of degrees of freedom bigger than one this system is not necessarily compatible, i.e.
the generating function does not exists.

The existence and large variety of canonical transformations, deprives to a large extent the gener-
alised coordinates and momenta of their original meaning. This is clearly seen on the example of
the transformation Qi = pi, Pi = −qi, which does not affect Hamilton’s equations and amounts
calling coordinates momenta and vice versa. The usefulness of canonical transformations shows up
in the fact that in many cases they allow to simplify the hamiltonian and, therefore, to simplify and
hopefully solve Hamilton’s equation.

On account of this arbitrariness of nomenclature, the variables p and q are are often called in the
hamiltonian treatment canonically conjugate variables. The conditions related such quantities can
be expressed in terms of the Poisson brackets and the following theorem

Theorem. Poisson brackets are invariant under canonical transformations, i.e. for any two functions
f and g on the phase space

{f, g}p,q = {f, g}P,Q . (I.2.116)
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This property can be put as an independent definition of canonical transformations, see below.

Proof. We fist show that to satisfy (I.2.116) for any functions f and g, it is enough to require the
fulfilment of this relation for the coordinate functions of new variables, namely,

{Qi, Qj}p,q = {Qi, Qj}Q,P = 0 , {Pi, Pj}p,q = {Pi, Pj}Q,P = 0 , {Pi, Qj}p,q = {Pi, Qj}Q,P = δij .

Consider

{f, g}p,q =

n∑
i=1

(
∂f

∂pi

∂g

∂qi
− ∂f

∂qi

∂g

∂pi

)

=

n∑
i,j,l=1

(
∂f

∂Pj

∂Pj

∂pi
+

∂f

∂Qj

∂Qj

∂pi

)(
∂g

∂Pl

∂Pl

∂qi
+

∂g

∂Ql

∂Ql

∂qi

)
−
(
∂f

∂Pj

∂Pj

∂qi
+

∂f

∂Qj

∂Qj

∂qi

)(
∂g

∂Pl

∂Pl

∂pi
+

∂g

∂Ql

∂Ql

∂pi

)

=

n∑
i,j,l=1

∂f

∂Pj

∂g

∂Pl

(
∂Pj

∂pi

∂Pl

∂qi
− ∂Pj

∂qi

∂Pl

∂pi

)
+

∂f

∂Pj

∂g

∂Ql

(
∂Pj

∂pi

∂Ql

∂qi
− ∂Pj

∂qi

∂Ql

∂pi

)

+
∂f

∂Qj

∂g

∂Pl

(
∂Qj

∂pi

∂Pl

∂qi
− ∂Qj

∂qi

∂Pl

∂pi

)
+

∂f

∂Qj

∂g

∂Ql

(
∂Qj

∂pi

∂Ql

∂qi
− ∂Qj

∂qi

∂Ql

∂pi

)
.

Hence, we see that

{f, g}p,q =

n∑
j,l=1

∂f

∂Pj

∂g

∂Pl
{Pj , Pl}p,q +

∂f

∂Pj

∂g

∂Ql
{Pj , Ql}p,q +

∂f

∂Qj

∂g

∂Pl
{Qj , Pl}p,q +

∂f

∂Qj

∂g

∂Ql
{Qj , Ql}p,q .

It is clear from this formula that if the Poisson brackets of new coordinates and momenta evaluated
with respect to the old variables are

{Pj , Pl}p,q = 0 = {Qj , Ql} , {Pj , Ql}p,q = δjl = −{Qj , Pl}p,q , (I.2.117)

then equations (I.2.117) represent the sufficient condition that (I.2.116) will be satisfied. This is also
the necessary condition, as is seen by substituting in (I.2.116) as f and g all pairs Pj , Pl; Qj , Ql;
Pj , Ql and recalling that the Poisson brackets of variables computed with respect to themselves have
the canonical form.

Now we evaluate the Poisson brackets between the new coordinate functions by assuming that the
canonical transformation at hand is generated by a function F = F (q,Q). From equation (I.2.113)
we determine Qi = Qi(q, p) and then we substitute it back into (I.2.113), so that (I.2.113) becomes
an identity

pi =
∂F

∂qi
(q,Q(p, q)) . (I.2.118)

We then differentiate this identity with respect to qj and pj and get

0 =
∂pi
∂qj

=
∂2F

∂qi∂qj
+

∂2F

∂qi∂Qm

∂Qm
∂qj

,

δij =
∂pi
∂pj

=
∂2F

∂qi∂Qm

∂Qm
∂pj

.

From these matrix equations, we find

∂Qi
∂qj

= −
(
∂2F

∂q∂Q

)−1

im

∂2F

∂qm∂qj
, (I.2.119)

∂Qi
∂pj

=

(
∂2F

∂q∂Q

)−1

ij

. (I.2.120)
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First we compute

{Qi, Qj}p,q =
∂Qi
∂pk

∂Qj
∂qk

− ∂Qi
∂qk

∂Qj
∂pk

= −
(
∂2F

∂q∂Q

)−1

ik

(
∂2F

∂q∂Q

)−1

jm

∂2F

∂qm∂qk
+

(
∂2F

∂q∂Q

)−1

jk

(
∂2F

∂q∂Q

)−1

im

∂2F

∂qm∂qk
= 0 ,

as the second derivative is symmetric

∂2F

∂qm∂qk
=

∂2F

∂qk∂qm
.

Next, taking into account that F = F (q,Q(q, p)), we get

{Pi, Qj}p,q =
∂Pi
∂pk

∂Qj
∂qk

− ∂Pi
∂qk

∂Qj
∂pk

= − ∂

∂pk

(
∂F

∂Qi

)
∂Qj
∂qk

+
∂

∂qk

(
∂F

∂Qi

)
∂Qj
∂pk

= − ∂2F

∂Qi∂Qm

∂Qm
∂pk

∂Qj
∂qk

+
∂2F

∂Qi∂Qm

∂Qm
∂qk

∂Qj
∂pk

+
∂2F

∂qk∂Qi

∂Qj
∂pk

= − ∂2F

∂Qi∂Qm

[
∂Qm
∂pk

∂Qj
∂qk

− ∂Qm
∂qk

∂Qj
∂pk

]
+

∂2F

∂qk∂Qi

∂Qj
∂pk

.

Here the expression in the brackets coincide with {Qm, Qj}pq and, therefore, it vanishes, according
to what has been already proved. Thus, we are left with

{Pi, Qj}p,q =
∂2F

∂qk∂Qi

∂Qj
∂pk

=
∂2F

∂qk∂Qi

(
∂2F

∂q∂Q

)−1

jk

=

(
∂2F

∂q∂Q

)−1

jk

(
∂2F

∂q∂Q

)

ki

= δij ,

where we have applied (I.2.120). It remains to consider

{Pi, Pj}p,q =
∂Pi
∂pk

∂Pj
∂qk
− ∂Pi
∂qk

∂Pj
∂pk

=
∂

∂pk

(
∂F

∂Qi

)
∂

∂qk

(
∂F

∂Qj

)
− ∂

∂qk

(
∂F

∂Qi

)
∂

∂pk

(
∂F

∂Qj

)

=
∂2F

∂Qi∂Qm

∂Qm
∂pk

[
∂2F

∂qk∂Qj
+

∂2F

∂Qj∂Qn

∂Qn
∂qk

]
−
[

∂2F

∂qk∂Qi
+

∂2F

∂Qi∂Qm

∂Qm
∂qk

]
∂2F

∂Qj∂Qn

∂Qn
∂pk

=
∂2F

∂Qi∂Qm

∂2F

∂Qj∂Qn

[
∂Qm
∂pk

∂Qn
∂qk

− ∂Qm
∂qk

∂Qn
∂pk

]

+
∂2F

∂Qi∂Qm

∂Qm
∂pk

∂2F

∂qk∂Qj
− ∂2F

∂Qj∂Qm

∂Qm
∂pk

∂2F

∂qk∂Qi
.

The expression in the brackets is {Qm, Qn}p,q and, therefore, vanishes. Thus, taking into account
(I.2.120), we obtain

{Pi, Pj}p,q =
∂2F

∂Qi∂Qm

∂Qm
∂pk

∂2F

∂qk∂Qj
− ∂2F

∂Qj∂Qm

∂Qm
∂pk

∂2F

∂qk∂Qi

=
∂2F

∂Qi∂Qm

(
∂2F

∂q∂Q

)−1

mk

(
∂2F

∂q∂Q

)

kj

− ∂2F

∂Qj∂Qm

(
∂2F

∂q∂Q

)−1

mk

(
∂2F

∂q∂Q

)

ki

=
∂2F

∂Qi∂Qj
− ∂2F

∂Qj∂Qi
= 0 .

The proof for other types of generating functions is analogous. �

Now we demonstrate preservation of Poisson brackets by canonical transformations directly from
considering transformations of Hamilton’s equations under coordinate changes. Thus, imagine we
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perform a change of variables22 yj = f j(xk), where the vector ~x = (xk) as in (I.2.91). Then

ẏj =
∂yj

∂xk︸︷︷︸
Ajk

ẋk = AjkJ
km∇xmH = AjkJ

km ∂yp

∂xm
∇ypH ′

or in the matrix form
ẏ = AJAt · ∇yH ′ .

The new equations for y are Hamiltonian with the new Hamiltonian H ′(y) = H(f−1(y)) = H(x), if
and only if

AJAt = J .

Hence, this construction motivates the following definition.

Definition. Transformations of the phase space which satisfy the condition

AJAt = J

are called canonical.23

This is an alternative but equivalent definition of canonical transformations.

Example. Consider transformation (I.2.115) and show that it preserves the Poisson brackets. Since
the Poisson brackets are skew-symmetric, the only bracket we have to check is

{P,Q} = {− sinα q + cosαp, cosα q + sinαp}
= − sin2 α{q, p}+ cos2 α{p, q} = (cos2 α+ sin2 α){p, q} = 1 .

In many cases to check that a given transformation is canonical it is much simpler to compute
the Poisson brackets (differentiation) and check their canonicity than to obtain the corresponding
generating function (integration).

22For simplicity we restrict our consideration to transformations that do not explicitly depend on time.
23In the case when A does not depend on x, the set of all such matrices form a Lie group known as the real

symplectic group Sp(2n,R) . The term “symplectic group" was introduced by Herman Weyl. The geometry of the
phase space which is invariant under the action of the symplectic group is called symplectic geometry.
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Part II

Electrodynamics
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Chapter 3

Electrostatics

“The problem of finding the solution
to any electrostatic problem is equiv-
alent to finding a solution of Laplace’s
equation throughout the space not oc-
cupied by conductors."

Sir James Jeans (1925)

Classical electrodynamics is a theory of electric and magnetic fields caused by distributions of electric
charges and currents. This theory is entirely based on Maxwell’s equations

~∇ · ~H = 0 ,
∂ ~H

∂t
= −c ~∇× ~E ,

~∇ · ~E = 4πρ ,
∂ ~E

∂t
= c ~∇× ~H − 4π~j .

(II.3.1)

Within the field of electrodynamics, one can study electromagnetic fields under certain static con-
ditions leading to electrostatics (electric fields independent of time) and magnetostatics (magnetic
fields independent of time). First, we focus on the laws of electrostatics.

3.1 Laws of electrostatics

Electrostatics studies electric fields produced by static electric charges. Historically, it stems from
the discovery of Coulomb’s law (1785). This law determines the force that two electrically charged
bodies (point charges) exert on each other

~F = k q1q2
~x1 − ~x2

|~x1 − ~x2|3
. (II.3.2)

Here q1 and q2 are the magnitudes of charges located at positions ~x1 and ~x2, as presented in Fig.
3.1. The coefficient k is Coulomb’s constant and its value, as well as physical dimension depends on
the system of units used. More precisely, the situation is as follows.

1. In SI units, the force is measured in newtons and charge in coulombs. Coulomb’s constant is

k =
1

4πε0
.
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Here ε0 is the so-called vacuum permittivity and its numerical value is ε0 = 8.8542 ·10−12F/m,
where F stands for farad, a unit of capacitance being equal to one coulomb per volt.

2. In the Gaussian system of units the vacuum permittivity ε0 = 1
4π , so that k = 1. From

Coulomb’s law we can deduce the physical dimension of the electric charge in this system,
namely,

[q] = [F · `2]1/2 = [E · `]1/2 = m1/2`3/2t−1 = [~ · c]1/2 ,
where the last term expresses the physical dimension of electric charge via dimensions of two
fundamental constants, the Planck constant h and the speed of light c. The Gaussian system
is more suitable for theoretical studies.

3. The Heaviside-Lorentz system is a modification of the Gaussian system which differs from the
latter only by factors of 4π. In particular, in this system ε0 = 1, so that k = 1/4π.

There are other system of units which we will not discuss here. In the following we adopt the
Gaussian system. The Coulomb’s law then reads

~F12 = q1q2
~x1 − ~x2

|~x1 − ~x2|3
, (II.3.3)

where ~F12 is the force that the second charge q2 experts on the first charge q1, cf. the general
definition of Fij after (I.1.2).

·

·

~x1

~x2

~x1 � ~x2

q1

q2O

Figure 3.1: Two charges q1 and q2 and their re-
spective position vectors ~x1 and ~x2. The charges
exert an electric force on one another.

One can introduce the concept of an electric
field ~E as the force experienced by a point-like
charge q1 in the limit of vanishing q1

~E (~x) = lim
q1→0

~F12 (~x)

q1
= q2

~x− ~x2

|~x− ~x2|3
, ~x = ~x1 .

We have used the limiting procedure to intro-
duce a test charge such that it will only measure
the electric field at a certain point and not cre-
ate its own field. Hence, using Coulomb’s law,
we obtained an expression for the electric field
of a point charge q located at ~x′

~E (~x) = q
~x− ~x′
|~x− ~x′|3 .

Since ~E is a vector quantity, to find ~E produced
by many charges we can apply the superposition
principle. Consequently, the field strength will simply be a sum of all of the contributions, which we
can write as

~E (~x) =

N∑

i=1

qi
~x− ~xi
|~x− ~xi|3

. (II.3.4)

Introducing an electric charge density ρ (~x), the electric field for a continuous distribution of charge
is given by

~E (~x) =

∫
ρ (~x′)

~x− ~x′
|~x− ~x′|3 d3x′ . (II.3.5)

The Dirac delta-function (distribution) allows one to write down the electric charge density which
corresponds to local charges

ρ (~x) =

N∑

i=1

qiδ (~x− ~xi) . (II.3.6)
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Figure 3.2: The electric flux through a surface, which is proportional to the charge within the surface.

Substituting this formula into eq.(II.3.5), one recovers eq.(II.3.4).

Gauss theorem (integral form). However, eq.(II.3.5) is not very convenient for finding the electric
field. For this purpose, one typically turns to another integral relation known as the Gauss theorem,
which states that the flux through an arbitrary surface is proportional to the charge contained inside
it. Let us consider the flux of ~E through a small region of surface dS, represented graphically in
Fig. 3.2,

dN =
(
~E · ~n

)
dS =

q

r3
(~r · ~n) dS =

q

r2
cos (~r, ~n) dS =

q

r2
dS′ ,

where on the first step we have used that ~E = q ~rr3 . Here (~r, ~n) ≡ θ is an angle between ~r and
the normal ~n to the surface. By the definition of dS′, we observe that it is positive for an angle θ
between ~E and ~n less than π

2 , and negative otherwise. Numerically, the product cos (~r, ~n) dS equals
to the projection of the area dS on a surface perpendicular to ~r. We introduce a solid angle dΩ

dΩ =
dS′

r2
. (II.3.7)

Plugging this relation into eq.(II.3.7) leaves us with the following expression for the flux

dN = q · dΩ . (II.3.8)

By integrating eq.(II.3.8), we obtain the following equation for the flux N

∮

S

(
~E · ~n

)
dS =

{
4πq if q is inside the surface
0 otherwise

Equivalently, using the fact that the integral of the charge distribution over volume V is equal to
the total charge enclosed in the volume, i.e. q =

∫
V
ρ (x) d3x, one finds a similar expression

∮

S

(
~E · ~n

)
dS = 4π

∫
ρ(x) d3x .

The above formulae convey the essence of the Gauss theorem.

Gauss theorem. In an arbitrary electrostatic field the flux of electric field ~E through an arbitrary
closed surface equals to the total amount of charge multiplied by 4π inside this surface.
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Gauss theorem (differential form). By using of the Gauss-Ostrogradsky theorem, one may
rewrite the surface integral in terms of the volume integral of the divergence of the vector field ~E

∮

S

(
~E · ~n

)
dS =

∫

V

div ~E (~x) d3x .

Recalling that the left hand side is equal to 4πq, a relation between the divergence of the electric
field and the charge density arises

0 =

∫

V

[
div ~E (~x)− 4πρ (~x)

]
d3x .

Since the relation holds for any chosen volume, then the expression inside the integral must equal
to zero. The resulting equation is then

div ~E (~x) = 4πρ (~x) .

This is known as the differential form of the Gauss (law) theorem for electrostatics. This is the first
equation from the set of four Maxwell’s equations, the latter being the essence of electrodynamics.

Irrotationality of electric field. The Gauss theorem is not enough, however, to determine all the
components of ~E. A vector field ~A is known if its divergence and its curl, denoted as div ~A and rot ~A
respectively, are known.1 Hence, some information is necessary about the curl of electric field. This
is in fact given by the second equation of electrostatics

~∇× ~E = 0 . (II.3.9)

The second equation of electrostatics is known as Faraday’s law in the absence of time-varying
magnetic fields, which are obviously not present in electrostatics (since we required all fields to be
time independent).

We will argue about (II.3.9) in the following way. Starting from the definition of the electric field
(Coulomb’s law) given by equation (II.3.5), we rewrite it in terms of a gradient and pull the differ-
ential operator outside of the integral

~E (~x) =

∫
ρ (~x′)

~x− ~x′
|~x− ~x′|3 d3x′ = −

∫
ρ (~x′) ~∇x

1

|~x− ~x′|d
3x′ = −~∇

∫
ρ (~x′)
|~x− ~x′|d

3x′ .

The curl of the gradient is zero, so that

~∇× ~∇ϕ = 0 ⇒ ~∇× ~E = 0 .

Scalar potential. This derivation shows that the vanishing of ~∇× ~E is not related to the inverse
square law. It also shows that the electric field is the minus gradient of a scalar potential ϕ

~E = −~∇ ϕ .

From the above, it then follows that this scalar potential is given by

ϕ(~x) =

∫
ρ(~x′)
|~x− ~x′|d

3x′ , (II.3.10)

where the integration is carried out over the entire space. Obviously, the scalar potential is defined
up to an additive constant; adding any constant to a given ϕ(~x) does not change the corresponding
electric field ~E.

1This is Helmholtz theorem, see section 7.7.
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Figure 3.3: The work that has to be done over a charged particle to move it along the
path from A to B through an electric field ~E.

Before we proceed, we also mention the scalar potential for N point changes. This can be obtained,
for instance, by substituting in (II.3.10) the charge density (II.3.6)

ϕ(~x) =

∫ N∑

i=1

qiδ(~x
′ − ~xi)

|~x− ~x′| d3x′ =

N∑

i=1

qi
|~x− ~xi|

.

What is the physical interpretation of ϕ(x)? Consider the work which has to be done to move a
test charge along a path from point A to B through an electric field ~E

W = −
∫ B

A

~F · d~l = −q
∫ B

A

~E · d~l .

The minus sign represents the fact that the test charge does work against the electric forces. By
associating the electric field as the gradient of a scalar potential, one obtains

W = q

∫ B

A

~∇ϕ · d~l = q

∫ B

A

∂ϕ

∂x
dx+

∂ϕ

∂y
dy +

∂ϕ

∂z
dz

= q

∫ tB

tA

(∂ϕ
∂x

dx

dt
+
∂ϕ

∂y

dy

dt
+
∂ϕ

∂z

dz

dt

)
dt = q

∫ tB

tA

dϕ

dt
dt = q (ϕB − ϕA) ,

where we have parametrized the path as (x(t), y(t), z(t)). The result is just a difference between the
potentials at the end points of the path. This implies that the potential energy of a test charge is
given by

V = q ϕ .

In other words, the potential energy does not depend on the choice of path (
::::::
hence,

:::
the

:::::::
electric

:::::
force

:
is
::
a
:::::::::::
conservative

:::::
force). If a path is chosen such that it is closed, i.e. A = B, the integral reduces to

zero

∮
~E · d~l = 0 .

This result can also be obtained from Stokes’ theorem
∮ (

~E · d~l
)

=

∮

S

rot ~E · d~S = 0 ,
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where we have used the fact that rot ~E = 0.

Matching condition. One important application of the Gauss theorem is determination of the
electric field of charged surfaces. Analogously to ρ, one can define the surface charge density σ =
dq/dS, where dq is an amount of charge spread over an infinitesimal surface dS. Consider no an
arbitrary charged surface S. Choose a normal ~n to S in an arbitrary way and agreed to call 1
and 2 the quantities that refer to internal and external sides (with respect to ~n) of the surface.

d`

~n1

~n2

~n

2

1 S

Figure 3.4: Discontinuity of En.

Theorem. The normal component of elec-
tric has a discontinuity 4πσ passing through a
charged surface, independently of the shape of
this surface.

E2n − E1n = 4πσ . (II.3.11)

Here E1n and E2n are normal components of
the electric field on the internal and external
sides of the surface. Formula (II.3.11) is called
matching condition. The discontinuity of En is
explained by the fact that the electric field of
surface charges on different sides of the surface
has opposite directions: from the surface if it is
charged positively and towards the surface if it
is charged negatively.

We can use the matching condition to immediately determine the electric field on the surface of a
conductor. Since inside a conductor ~E = 0, and, in particular, E1n = 0, the matching condition
yields En = 4πσ. The electric field is always normal to the surface of the conductor, as follows from
electrostatic equilibrium.

Summary. To summarize, we have derived two laws of electrostatics in the differential form

~∇ · ~E = 4πρ , (II.3.12)
~∇× ~E = 0 . (II.3.13)

The main problem of electrostatics is, therefore, giving the charge density ρ, to solve the above
equations and find the corresponding electric field. The electrostatics of conductors amounts to
determining the electric field in the vacuum outside the conductors and the distribution of charges
on their surfaces.

3.2 Laplace and Poisson equations

In the previous section it was shown that the curl of the electric field is equal to zero, thus the field
is simply the gradient of some scalar function, which can be written as

~∇× ~E = 0 ⇒ ~E (~x) = −~∇ϕ (~x) .

Substituting the right hand side of this expression into equation (II.3.12), we obtain

div ~∇ϕ (~x) = −4πρ (~x)

that is

∆ϕ (~x) = −4πρ (~x) , (II.3.14)
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where ~∇2 ≡ ∆ is the Laplace operator. Equation (II.3.14) is known as the Poisson equation.

In the case ρ (~x) = 0, i.e. in a region of no charge, the left hand side of (II.3.14) is zero, which is
known as the Laplace equation. Functions satisfying ∆ϕ = 0 are called harmonic functions. The
potential solving the Laplace equation has the following remarkable property

Earnshaw’s theorem. The function ϕ(x, y, z) can take maximum and minimum values only at
the boundaries of the region where there is a field. As a result, a test charge q introduced into the
field cannot be in stable equilibrium, since there is no point at which its potential energy qϕ would
have a minimum.

The proof is as follows. Let us suppose, for example, that the potential has a maximum at some
point A not on the boundary of a region where there is a field. Then the point A can be surrounded
by a small closed surface on which the the normal derivative ~n · ~∇ϕ < 0. Consequently, the integral
over this surface ∮

S

(~n · ~∇ϕ)dS < 0 .

Using the Gauss-Ostrogradsky theorem, we get an equivalent statement in terms of an integral over
the volume V that bounds S

∮

S

(~n · ~∇ϕ)dS =

∫

V

(~∇ · ~∇ϕ)dV =

∫

V

∆ϕdV < 0 ,

giving a contradiction because the last integral vanishes because ∆ϕ = 0.

S

∆ϕ = 0

Figure 3.5: The field ϕ (~x), which obeys the Laplace equation, has no
maximum or minimum inside a region S.

Another way to understand this remarkable property is to note that for an extremum to exist one
needs to have ∂ϕ

∂xi
= 0 together with either ∂2ϕ

∂x2
i
> 0 or ∂2ϕ

∂x2
i
< 0 for ∀i. The latter condition is

impossible to satisfy because ∆ϕ = 0.

Let us now see why and how the scalar potential (II.3.10) satisfies the Poisson equation. Substituting
(II.3.10) into (II.3.14), we get

∆ϕ (~x) = ∆

∫
ρ(~x′)
|~x− ~x′|d

3x′ =

∫
d3x′ ρ(~x′)∆

1

|~x− ~x′| .

Without loss of generality we can take x′ = 0, which is equivalent to choosing the origin of our
coordinate system. By switching to spherical coordinates, we can show that

∆
1

|~x− ~x′| = ∆
1

r
=

1

r

d2

dr2

(
r

1

r

)
= 0 .
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This is true everywhere except for r = 0, for which the expression above is undetermined. To
determine its value at r = 0 we can use the following trick. Integrating over volume V , using the
Gauss-Ostrogradsky theorem and the fact that ~∇r = ~n, one obtains

∫

V

∆

(
1

r

)
d3x =

∫

V

div ~∇
(

1

r

)
d3x =

∮

S

~n · ~∇1

r
dS

=

∮

S

~n · ∂
∂r

(
1

r

)
~n dS =

∮

S

∂

∂r

(
1

r

)
r2dΩ︸ ︷︷ ︸

dS

= −4π .

Therefore,

∆
1

r
= −4πδ(~x) , (II.3.15)

or

∆x
1

|~x− ~x′| = −4πδ (~x− ~x′) .

Thus, we find

∆ϕ =

∫
ρ(~x′)

(
− 4πδ(~x− ~x′)

)
d3x′ = −4πρ(~x) .

As (II.3.15) shows, we have proved that 1
r solves the Poisson equation with the point-like charge

source represented by delta-function.

3.3 Solution of the boundary-value problems

If in electrostatics we would always deal with discrete or continuous distributions of charges
:::::::
without

:::
any

:::::::::
boundary

::::::::
surfaces, then the general expression (where one integrates over all of space)

ϕ(~x) =

∫
d3x′

ρ(~x′)
|~x− ~x′| (II.3.16)

would be the most convenient and straightforward solution of the problem. In other words, given
some distribution of charge, one can find the corresponding potential and, hence, the electric field
~E = −~∇ϕ.

In reality, most of the problems deals with finite regions of space (containing or not containing the
charges), on the boundaries of which definite boundary conditions are assumed. These boundary
conditions can be created by a specially chosen distribution of charges outside the region in question.
In this situation our general formula (II.3.16) cannot be applied with the exception of some particular
cases (as in the method of images).

3.3.1 Green’s theorems and functions

To handle the boundary conditions it is necessary to invoke the identities or theorems due to George
Green.
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Green’s theorems

Consider an arbitrary vector field2 ~A. We have
∫

V

div ~A d3x =

∮

S

(
~A · ~n

)
dS . (II.3.17)

Let us assume that ~A has the following specific form

~A = ϕ · ~∇ψ ,

where ψ and ϕ are arbitrary functions. Then

div ~A = div
(
ϕ · ~∇ψ

)
=

∂

∂xi

(
ϕ
∂ψ

∂xi

)
= ~∇ϕ · ~∇ψ + ϕ∆ψ .

Substituting this back into eq.(II.3.17), we get
∫

V

(
~∇ϕ · ~∇ψ + ϕ∆ψ

)
d3x =

∮

S

ϕ ·
(
~∇ψ · ~n

)
dS =

∮

S

ϕ

(
∂ψ

∂n

)
dS , (II.3.18)

where ∂/∂n is the normal derivative to the surface S. Equation (II.3.18) is known as the first Green
formula. When we interchange ϕ for ψ in the above expression and take a difference of these two
we obtain the second Green formula

∫

V

(ϕ∆ψ − ψ∆ϕ) d3x =

∮

S

(
ϕ
∂ψ

∂n
− ψ∂ϕ

∂n

)
dS . (II.3.19)

By using this formula, the differential Poisson equation can be reduced to an integral equation.
Indeed, consider a function ψ such that

ψ ≡ 1

R
=

1

|~x− ~x′| ⇒ ∆ψ = −4πδ (~x− ~x′) . (II.3.20)

Substituting it into the second Green formula (II.3.19) and
::::::::
assuming

::
x
::
is
:::::::
inside

:::
the

::::::
space

:::
V

:::::::::
integrated

::::
over, one gets
∫

V

(
−4πϕ(~x′)δ (~x− ~x′) +

4πρ(~x′)
|~x− ~x′|

)
d3x′ =

∮

S′

[
ϕ
∂

∂n′

(
1

R

)
− 1

R

∂ϕ

dn′

]
dS′ .

Here we have chosen ϕ (~x′) to satisfy the Poisson equation ∆ϕ (~x′) = −4πρ (~x′). Taking into account
that

∫
V
ϕ (~x′) δ (~x− ~x′) = ϕ (~x), the expression above allows one to express ϕ(~x) as

ϕ (~x) =

∫

V

ρ (~x′)
R

d3x′ +
1

4π

∮

S

[
1

R

∂ϕ

∂n′
− ϕ ∂

∂n′

(
1

R

)]
dS′ , (II.3.21)

which is the general solution for the scalar potential. The terms inside the integrals are equal to
zero if x lies outside of V .

Consider the following two special cases:

1) If S goes to ∞ and the electric field vanishes on it faster than 1
R , then the surface integral turns

to zero and ϕ(~x) turns into our general solution given by eq.(II.3.16).
2Now introduced for mathematical convenience, but it will later prove to be of greater importance.
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2) For a volume which does not contain charges, the potential at any point (which gives a solution of
the Laplace equation) is expressed in terms of the potential and its normal derivative on the surface
enclosing the volume. This result, however, does not give a solution of the boundary problem,
rather it represents an integral equation, because given ϕ and ∂ϕ

∂n (Cauchy boundary conditions) we
overdetermined the problem.

Therefore, the question arises which boundary conditions should be imposed to guarantee a unique
solution to the Laplace and Poisson equations. Experience shows that given a potential on a closed
surface uniquely defines the potential inside (e.g. a system of conductors on which one maintains
different potentials). Giving a potential on a closed surface corresponds to the Dirichlet boundary
conditions.

Analogously, given an electric field (i.e. normal derivative of a potential) or likewise the surface
charge distribution (E ∼ 4πσ) also defines a unique solution. These are the Neumann boundary
conditions3.

Uniqueness of solution with Dirichlet ot Neumann boundary conditions

One can prove, with the help of the first Green formula, that the Poisson equation

∆ϕ = −4πρ ,

in a volume V has a unique solution under the Dirichlet or the Neumann conditions given on a
surface S enclosing V . To do so, assume there exist two different solutions ϕ1 and ϕ2 which both
have the same boundary conditions. Consider

U = ϕ2 − ϕ1 .

It solves ∆U = 0 inside V and has either U = 0 on S (Dirichlet) or ∂U
∂n = 0 on S (Neumann). In

the first Green formula one plugs ϕ = ψ = U , so that
∫

V

(∣∣∣~∇U
∣∣∣
2

+ U∆U

)
d3x =

∮

S

U

(
∂U

∂n

)
dS . (II.3.22)

Here the second term in the integral vanishes as ∆U = 0 by virtue of being the solution to the
Laplace equation and the right hand side is equal to zero, since we have assumed that the value of
the potential (Dirichlet) or its derivative (Neumann) vanish at the boundary. Therefore,

∫

V

|~∇U |2 = 0 −→ |~∇U | = 0

−→ ~∇U = 0 (II.3.23)

Thus, inside V the function U is constant everywhere. For Dirichlet boundary conditions U = 0
on the boundary and so it is zero uniformly, such that ϕ1 = ϕ2 everywhere, i.e. there is only one
solution. Similarly, the solution under Neumann boundary conditions is also unique up to unessential
boundary terms.

Method of Green’s functions

This method is used to find solutions of many second order differential equations and provides a
formal solution to the boundary-value problems. The method is based on an impulse from a source,

3Note that both Dirichlet as well as Neumann boundary conditions are not only limited to electrodynamics, but
are more general and appear in the theory of ordinary or partial differential equations.
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which is later integrated with the source function over entire space. Recall

∆
1

|~x− ~x′| = −4πδ (~x− ~x′) . (II.3.24)

However, the function 1
|~x−~x′| is just one of many functions which obeys ∆ψ = −4πδ (~x− ~x′). The

functions that are solutions of this second order differential equation are known as Green’s functions.
In general,

∆G (~x, ~x′) = −4πδ (~x− ~x′) , (II.3.25)

where
G (~x, ~x′) =

1

|~x− ~x′| + F (~x, ~x′) ,

so that ∆F (~x, ~x′) = 0, i.e. it obeys the Laplace equation inside V .

The point is now to find such F (~x, ~x′), that gets rid of one of the terms in the integral equation
(II.3.21) we had for ϕ (~x). Letting ϕ = ϕ (~x) and ψ = G (~x, ~x′), we then get

ϕ (~x) =

∫

V

ρ (~x′)G (~x, ~x′) d3x
′
+

1

4π

∮

S

[
G (~x, ~x′)

∂ϕ (~x′)
∂n′

− ϕ (~x′)
∂G (~x, ~x′)

∂n′

]
dS′ .

By using the arbitrariness in the definition of the Green function we can leave in the surface integral
a chosen type of boundary conditions.

1) For the Dirichlet case we can choose GD (~x, ~x′) = 0 when ~x′ ∈ S, then ϕ(~x) simplifies to

ϕ (~x) =

∫

V

ρ (~x′)GD (~x, ~x′) d3x′ − 1

4π

∮

S

ϕ (~x′)
∂GD (~x, ~x′)

∂n′
dS′ ,

where GD (~x, ~x′) is referred to as the bulk-to-bulk propagator and
∂GD(~x,~x′)

∂n′ is the bulk-to-boundary
propagator.

2) For the Neumann case we could try to choose
∂GN(~x,~x′)

∂n′ = 0 when ~x′ ∈ S. However, one has
∮

S

∂GN (~x, ~x′)
∂n′

dS′ =

∮

S

(
~∇GN · ~n

)
dS′ =

∫

V

div~∇GN d3x′ =

∫

V

∆GN d3x′

= −4π

∫
δ(~x− ~x′) d3x′ = −4π .

For this reason we can not demand
∂GN(~x,~x′)

∂n′ = 0. Instead, one chooses another simple condition
∂GN(~x,~x′)

∂n′ = − 4π
S , where S is the total surface area, and the left hand side of the equation is referred

to as the Neumann Green function. Using this condition, we get

ϕ (~x) =

∫

V

ρ (~x′)GN (x, x′) d3x′ +
1

4π

∮

S

GN (~x, ~x′)
∂ϕ (~x′)
∂n′

dS′ +
1

S

∮

S

ϕ (~x′) dS′ .

The last term represents 〈ϕ〉, the averaged value of the potential on S. If S is infinite this term
vanishes. In any case, the extra term 1

S

∮
S
ϕ (~x′) dS′ is just a constant (does not depend on x) and,

therefore, does not contribute to the electric field ~E = −~∇ϕ.
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x = 0
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Figure 3.6: Charge placed in front of a metallic grounded plate. An image charge is put in the left
half-space to emulate the boundary condition ϕ = 0 all along the plate.

3.3.2 Method of images

The method of images concerns itself with the problem of one or more point charges in the presence
of boundary surfaces, for example, conductors either grounded or held at fixed potentials. Under
favorable conditions it is possible to infer from the geometry of the situation that a small number of
suitably placed charges of appropriate magnitude ,

:::::::
external

::
to

::::
the

::::::
region

::
of

:::::::
interest, can simulate

the required boundary conditions. These charges are called image changes and the replacement
of actual problem with boundaries by an enlarged region with image charges but no boundaries is
called the method of images.

Example. Consider a point charge q located at a distance ~x1 = a~ex of an infinite grounded metallic
plate. In the absence of the plate the scalar potential would be

ϕ =
q

|~x− ~x1|
=

q√
y2 + z2 + (x− a)2

.

Although it satisfies Laplace’s equation, this solution cannot persist in the presence of the plate.
Since the plate is grounded, one should have ϕ = 0 all along the plate, which is not the case for the
solution above. The problem can be cured by adding an image charge of opposite value precisely on
the mirror side of the plate. Since the potentials are additive, the potential by the charge and its
mirror is

ϕ =
q

|~x− ~x1|
− q

|~x+ ~x1|
=

q√
y2 + z2 + (x− a)2

− q√
y2 + z2 + (x+ a)2

, x ≥ 0 . (II.3.26)

We should consider this potential above only in the region x ≥ 0. Obviously ϕ = 0 along the plate
and the boundary condition is satisfied. The solution we found satisfies the same Poisson equation
in the right half-space. Indeed,

∆ϕ = −4πq δ(~x− ~x1) +(((
((((4πq δ(~x+ ~x1) .

The second 3d-delta-function never contributes in the region x ≥ 0, as it contains the factor δ(x+a)
which is always zero in this region. Thus, (II.3.26) is the desired solution – it solves the Poisson
equation of the charge q in the right half-space and vanishes all along the plate x = 0.
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We can now compute the other physical quantities, in first turn the the electric field

~E = −~∇ϕ = q

[
~x− ~x1

|~x− ~x1|3
− ~x+ ~x1

|~x+ ~x1|3
]
.

Knowing ~E, it is straightforward to find the surface charge distribution σ, namely,

σ =
1

4π
~E · ~n

∣∣∣
x=0

=
q

4π

[
x− a

((x− a)2 + y2 + z2)3/2
− x+ a

((x+ a)2 + y2 + z2)3/2

]

x=0

,

so that

σ = − q

2π

a

(a2 + y2 + z2)3/2
.

This allows us to determine the total (induced) charge of the plate

Q =

+∞∫∫

−∞

σdydz = − qa
2π

2π

∫ ∞

0

rdr

(a2 + r2)3/2
= −q .

Another example of application of the method of images will be considered in Tutorial X.

3.3.3 Separation of variables

Many problems of potential theory have a symmetry that makes a particular coordinate system
most natural for its description. In an orthogonal coordinate system where (u, v, w) labels a point
in space, the method of separation of variables assumes a product solution of the form

ϕ(u, v, w) = A(u)B(v)C(w) .

This ansatz separates Laplace’s partial differential equation into three ordinary, second-order dif-
ferential equation in 13 different coordinate systems. The separation process generates three un-
determined "separation" constants (not all independent) which serve as parameters in differential
equations and label their solutions. If α is a sole separation constant in the differential equation
for A(u), the most general solution for the latter is an arbitrary sum of two linearly independent
solutions a(1)

α A
(1)
α (u) + a

(2)
α A

(2)
α (u) and similarly for the separation constants β and γ governing the

differential equations for B(v) and C(w). The most general solution of Laplace’s equation is a sum
over all possible values of separation constants of products of the corresponding solutions

ϕ(u, v, w) =
∑

αβγ

[a(1)
α A(1)

α (u) + a(2)
α A(2)

α (u)][b
(1)
β B

(1)
β (v) + b

(2)
β B

(2)
β (v)][c(1)

γ C(1)
γ (w) + c(2)

γ C(2)
γ (w)] .

The separation constants and coefficients must be chosen in such a way as to satisfy the boundary
conditions and the symmetry of the problem, as well as to retain the potential finite through the
solution volume.

Electrostatic problems with cartesian symmetry

For potential problems with natural rectangular boundaries, the trial solution

ϕ = X(x)Y (y)Z(z)

converts Laplace’s equation

∆ϕ =
∂2ϕ

∂x2
+
∂2ϕ

∂y2
+
∂2ϕ

∂z2
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into

X ′′(x)

X(x)
+
Y ′′(y)

Y (y)
+
Z ′′(z)
Z(z)

= 0 .

For this to be true one has to have

X ′′ = α2X , Y ′′ = β2Y , Z ′′ = γ2Z

with real separation constants α2, β2 and γ2 satisfying

α2 + β2 + γ2 = 0 . (II.3.27)

Elementary solutions are

Xα(x) =

{
A0 +B0x, α = 0 ,

Aαeαx +Bαe−αx , α 6= 0 ,

Yβ(y) =

{
C0 +B0y, β = 0 ,

Cβeβy +Dβe−βy , β 6= 0 ,

Zγ(z) =

{
E0 + F0z, γ = 0 ,

Eγeγz + Fγe−γz , γ 6= 0 .

The linearity of Laplace’s equation allows one to superpose the products of elementary solutions and
produce a general solution in the form

ϕ(x, y, z) =
∑

α

∑

β

∑

γ

Xα(x)Yβ(y)Zγ(z)δ(α2 + β2 + γ2) . (II.3.28)

y

x

z V (x, y)

a
b

c

Figure 3.7: Empty box with the z = 0 bottom wall
maintained at non-zero potential V (x, y).

Example. Let us use the above formula to find
the potential inside the rectangular box shown
in Fig. 3.7. We assume that all the walls are
fixed at zero potential except for the z = 0 wall,
where the potential takes a given value V (x, y).
The homogeneous boundary conditions on the
vertical sides of the wall can be easily satisfied
if we take α and β to be purely imaginary, i.e.
α → iα and β → iβ. T We can then choose
the new Xα(x) and Yβ(y) to be sine functions
which vanish at x = a and y = b, respectively.
Having in mind that constraint (II.3.27) gives
γ2 = α2 + β2, the general ansatz (II.3.28) boils
down to

ϕ(x, y, z) =

∞∑

m=1

∞∑

n=1

sin
mπx

a
sin

nπy

b

[
Emne

γmnz + Fmne
−γmnz] ,

where

γ2
mn =

(mπ
a

)2

+
(nπ
b

)2

.

The next task is to choose Emn and Fmn so the potential vanishes at z = c. If Vmn are coefficients
still to be determined, a convenient way to write the result is

ϕ(x, y, z) =

∞∑

m=1

∞∑

n=1

Vmn sin
mπx

a
sin

nπy

b

sinh γmn(c− z)
sinh γmnc

.
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It remains only to impose the final boundary condition that ϕ(x, y, 0) = V (x, y). This gives

V (x, y) =

∞∑

m=1

∞∑

n=1

Vmn sin
mπx

a
sin

nπy

b
,

which is a double Fourier sine representation of V (x, y). To find the coefficients Vmn, multiply both
sides of the last formula by sin(m′πx/a) sin(n′πy/b) and integrate over the intervals 0 ≤ x ≤ a and
0 ≤ y ≤ b, and use the orthogonality relation

∫ π

0

du sin(mu) sin(nu) =
π

2
δmn .

This yields

Vmn =
4

ab

∫ a

0

∫ b

0

dxdyV (x, y) sin
mπx

a
sin

nπy

b
.

This completes the solution of the problem. Another problem on separation of variables in cartesian
coordinates will be considered in Tutorial X.

The example raises the question of how to arrange a complete set of eigenvalues if we had specified
non-zero potentials on any (or all) of the vertical walls. The solution is to superpose the separated-
valuable solutions to several independent potential problems, each like the one in the present example
but with a different wall held at a non-zero potential. This general approach works for other
coordinate systems also.

Electrostatic problems with spherical symmetry

Frequently, when dealing with electrostatics, one encounters the problems exhibiting spherical sym-
metry. As an example, take Coulomb’s law (II.3.2), which depends on the radial distance only and
has no angular dependence. When encountering a symmetry of that sort, one often chooses a set of
convenient coordinates which greatly simplifies the corresponding problem.

 

  y

x

z

 

 

 

 

( ), ,P r θ φ

r

 

 

 
 

θ

φ

Figure 3.8: Spherical coordinate system.

It is no surprise that in this case, we will be making use of spherical coordinates, which in terms of
the Cartesian coordinates, are given by

r =
√
x2 + y2 + z2 ,

θ = arccos

(
z√

x2 + y2 + z2

)
, (II.3.29)
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φ = arctan
(y
x

)
,

To obtain the Cartesian coordinates from the spherical ones, we use

x = r sin θ cosφ ,

y = r sin θ sinφ , (II.3.30)
z = r cos θ .

In spherical coordinates Laplace’s operator looks as

∆ =
1

r2

(
∂

∂r
r2 ∂

∂r

)
+

1

r2 sin θ

(
∂

∂θ
sin θ

∂

∂θ

)
+

1

r2 sin2 θ

∂2

∂φ2
.

Hence, in these coordinates the Laplace equation reads as

∆ϕ =
1

r

∂2

∂r2
(rϕ) +

1

r2 sin θ

∂

∂θ

(
sin θ

∂ϕ

∂θ

)
+

1

r2 sin2 θ

∂2ϕ

∂φ2
= 0 .

The separation ansatz is

ϕ (r, θ, φ) =
U (r)

r
P (θ)Q (φ) .

Upon substituting this into the Laplace equation and multiplying both sides by r3 sin2 θ
U(r)P (θ)Q(φ) , one

obtains

r2 sin2 θ

[(
1

U

∂2U

∂r2

)
+

1

r2 sin θP

(
∂

∂θ
sin θ

∂P

∂θ

)]
+

1

Q

∂2Q

∂φ2
= 0 .

Since we only have φ dependence in the last term we can state that, since there are no other terms
with φ, then this term has to be constant (chosen here for convenience with anticipation of the
solution)

1

Q

∂2Q

∂φ2
= −m2 .

Hence the solution is Qm = e±imφ, where m is an integer such that Qm is single valued. This leaves
us with two separated equations. For P (θ) the equation simplifies to

1

sin θ

d

dθ

(
sin θ

dP

dθ

)
+

[
l(l + 1)− m2

sin2 θ

]
P = 0 ,

and for U (r) one obtains
d2U

dr2
− l (l + 1)

r2
U = 0 ,

where we have just again conveniently picked l(l+ 1) to be the integration constant such that in our
solution it will appear in a convenient form. It is easy to verify that the solution to the equation for
U(r) is given by

U (r) = Arl+1 +Br−l ,

where l is assumed to be non-negative and A and B are arbitrary constants. The combination
U(r)/r entering the potential is then

U(r)

r
= Arl +Br−(l+1) .
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Legendre polynomials. The second equation, on the other hand, is a bit more complicated and
upon substitution cos θ = x it transforms into

d

dx

[(
1− x2

) dP

dx

]
+

[
l(l + 1)− m2

1− x2

]
P = 0 ,

which one can recognize as the so-called generalized Legendre equation. Its solutions are the associ-
ated Legendre functions. For m2 = 0, we obtain the Legendre equation

d

dx

[
(1− x2)

dP

dx

]
+ l(l + 1)P = 0 . (II.3.31)

The solutions to this equation are referred to as the Legendre polynomials. In order for our solution
to have physical meaning, it must be finite and continuous on the interval −1 ≤ x ≤ 1. We try as a
solution the following power series (the Frobenius method)

P (x) = xα
∞∑

j=0

ajx
j , (II.3.32)

where α is unknown. Substituting our trial solution (II.3.32) into the Legendre equation (II.3.31),
we obtain

∞∑

j=0

[
(α+ j) (α+ j − 1) ajx

α+j−2 −
[

(α+ j) (α+ j + 1)− l (l + 1)
]
ajx

α+j

]
= 0 .

For j = 0 and j = 1, the first term will have xα−2 and xα−1 and the second term will have xα and
xα+1 respectively, which will never make the left hand side to vanish unless

• a0 6= 0, then α (α− 1) = 0 so that (A) α = 0 or α = 1

• a1 6= 0, then α (α+ 1) = 0 so that (B) α = 0 or α = −1

For other j, one obtains a recurrence relation

aj+2 =
(α+ j) (α+ j + 1)− l (l + 1)

(α+ j + 1) (α+ j + 2)
aj .

Cases (A) and (B) are actually equivalent. We will consider case (A) for which α = 0 or 1. The
expansion contains only even powers of x for α = 0 and only odd powers of x for α = 1. We note
two properties of this series:

1. The series is convergent for x2 < 1 for any l.

2. The series is divergent at x = ±1 unless it is truncated.

It is obvious from the recurrent formula that the series is truncated in the case that l is a non-
negative integer. The corresponding polynomials are normalized in such a way that they are all
equal to identity at x = 1. These are the Legendre polynomials Pl(x):

P0 (x) = 1 ;

P1 (x) = x ;

P2 (x) =
1

2

(
3x2 − 1

)
;

P3 (x) =
1

3

(
5x3 − 2x

)
;
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Figure 3.9: Profiles of a few Legendre polynomials.

· · ·
Pl (x) =

1

2ll!

dl

dxl
(
x2 − 1

)l
.

The general expression given in the last line is also known as the Rodrigues formula.

The Legendre polynomials form a complete system of orthogonal functions on −1 ≤ x ≤ 1. To check
whether they are indeed orthogonal, one takes the differential equation for Pl, multiplies it by Pl′ ,
and then integrates

∫ 1

−1

Pl′

[
d

dx
(1− x2)

dPl
dx

+ l(l + 1)Pl

]
dx = 0 ,

or
∫ 1

−1

[
(x2 − 1)

dPl′

dx

dPl
dx

+ l(l + 1)Pl′Pl)

]
dx = 0 .

Now subtract the same equation, but with the interchange of l and l′, such that the following
expression is left

[
l′(l′ + 1)− l(l + 1)

] ∫ 1

−1

Pl′Pl = 0 .

The equation above shows that for l 6= l′ the polynomials are orthogonal
∫ 1

−1

Pl′Pl = 0 .

By using the Rodrigues formula, one can get the following formula
∫ 1

−1

Pl′(x)Pl(x)dx =
2

2l + 1
δl′,l . (II.3.33)

Let us prove this formula. Since we have already proved that Legendre polynomials with different l are orthogonal, to prove
(II.3.33), we can put l = l′

∫ 1

−1

Pl(x)Pl(x)dx =
1

(2ll!)2

∫ 1

−1

dx

[
dl

dxl

(
x

2 − 1
)l][ dl

dxl

(
x

2 − 1
)l]

,
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where we used the Rodrigues formula. Now we integrate all l derivatives in the first bracket by parts. All arising boundary
terms vanish because

dk

dxk
(x

2 − 1)
l

vanish for k < l at both x = 1 and x = −1. Hence, we obtain

∫ 1

−1

Pl(x)Pl(x)dx =
(−1)l

(2ll!)2

∫ 1

−1

dx
(
x

2 − 1
)l [ d2l

dx2l

(
x

2 − 1
)l]

.

By using, for instance, the binomial expansion of (x2 − 1)l, one can see that

d2l

dx2l

(
x

2 − 1
)l

=
d2l

dx2l
x

2l
= (2l)! ,

and, as a result, we are left with

∫ 1

−1

Pl(x)Pl(x)dx =
(−1)l(2l)!

(2ll!)2

∫ 1

−1

dx
(
x

2 − 1
)l

=
(2l)!

(22ll!)2

∫ π

0

dθ sin
2l+1

θ =
(2l)!

(22ll!)2

√
πΓ(l + 1)

Γ(l + 3/2)
,

where a substitution x = cos θ was made and we have used a formula

∫ π

0

dθ sin
k
θ =
√
π

Γ( k+1
2 )

Γ( k+2
2 )

,

where Γ(z) is the so-called gamma-function, its integral representation is given by (II.3.34). Taking into account that
Γ(l + 1) = l! and

Γ(l + 3/2) = (l + 1/2)Γ(l + 1/2) = (l + 1/2)
√
π

(2l)!

4ll!
,

we find

∫ 1

−1

Pl(x)Pl(x)dx =
(2l)!

(2ll!)2

√
π l!× 4ll!

(l + 1/2)
√
π(2l)!

=
1

l + 1/2
=

2

2l + 1
,

which completes the proof.

For any function defined on −1 ≤ x ≤ 1

f(x) =

∞∑

l=0

AlPl(x) ,

where the coefficients Al are found by using the orthogonality relation (II.3.33) for Legendre poly-
nomials

Al =
2l + 1

2

∫ 1

−1

f(x)Pl(x)dx .

Note that this expansion and its coefficients is not different to any other set of orthogonal functions
in the function space. In situations where there is an azimuthal symmetry, one can take m = 0.
Thus,

ϕ (r, θ) =

∞∑

l=0

(
Alr

l +Blr
−(l+1)

)
Pl (cos θ) .

If charge is absent anywhere in the vicinity of the coordinate system, one should take Bl = 0.

Example. Determine a potential inside the sphere of radius R if on its surface the potential V (θ) is
held. We look for the potential in the form

ϕ (r, θ) =

∞∑

l=0

Alr
lPl (cos θ)
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that is regular solution of ∆ϕ = 0 inside the sphere. On its surface the potential is

V (θ) =

∞∑

l=0

AlR
lPl(cos θ)

so that

Al =
2l + 1

2Rl

∫ π

0

V (θ)Pl(cos θ) sin θdθ .

There is a non-trivial electric field inside the sphere ~E = −~∇ϕ. This electric field is divergenceless
~∇· ~E = −∆ϕ = 0 because there is no charge inside. In particular, if V (θ) = 0 (this is the case when
the sphere is grounded), then all Al = 0 so that ϕ = 0 and ~E = 0 everywhere inside the sphere.

Example. Let us find the potential of an empty sphere of radius r = R which has two semi-spheres
with separate potentials V (θ), such that the potential is equal to V for 0 ≤ θ < π

2 and equal to −V
for π

2 < θ ≤ π. For such a system, the scalar potential is given by

ϕ(r, θ) =
V√
π

∞∑

j=1

(−1)j−1 (2j − 1
2 )Γ(j − 1

2 )

j!

( r
R

)2j

P2j−1(cos θ)

= V

[
3

2

( r
R

)
P1(cos θ)− 7

8

( r
R

)3

P3(cos θ) +
11

16

( r
R

)5

P5(cos θ)− . . .
]
.

Here Γ (z) for < (z) > 0 is defined as

Γ (z) =

∫ ∞

0

tz−1e−tdt . (II.3.34)

Associated Legendre polynomials. Now we come back to the general case when azimuthal
symmetry is absent. In this case we have an equation

d

dx

[(
1− x2

) dP

dx

]
+

[
l(l + 1)− m2

1− x2

]
P = 0 ,

whose solutions are associated Legendre polynomials which can be also written explicitly with the
help of the Rodriges formula

Pml =
(−1)m

2ll!
(1− x2)

m
2
dl+m

dxl+m
(x2 − 1)l .

As in the case of Legendre polynomials, one can show that finiteness of the solution on −1 ≤ x ≤ 1
requires m to be an integer running −l,−(l − 1), . . . , 0, . . . , l − 1, l. It can be further shown that

P−ml (x) = (−1)m
(l −m)!

(l +m)!
Pml (x) .

Spherical harmonics. Solutions of the Laplace equation are represented as the product of three
terms depending on r, θ and φ respectively. It is convenient to combine an angular dependence and
construct a complete system of orthogonal functions on a sphere. Such functions Ylm ∼ Pml Qm are
called spherical harmonics, explicitly,

Ylm(θ, φ) =

(
2l + 1

4π

(l −m)!

(l +m)!

) 1
2
Pml (cos θ)eimφ
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and they obey Yl−m(θ, φ) = (−1)mY ∗lm(θ, φ). Introducing the Laplace operator on the unit sphere

∆Ω =
1

sin θ

∂

∂θ
sin θ

∂

∂θ
+

1

sin2 θ

∂2

∂φ2
,

we note that spherical harmonics are eigenstates of this operator

∆ΩYlm = −l(l + 1)Ylm .

Spherical harmonics form an orthogonal system of functions on the unit sphere S2 with the measure
dΩ = sin θdθdφ

∫

S2

dΩY ∗lm(Ω)Yl′m′(Ω) ≡
∫ 2π

0

dφ

∫ π

0

dθ sin θ Y ∗lm(θ, φ)Yl′m′(θ, φ) = δll′δmm′

and satisfy the completeness condition

∞∑

l=0

l∑

m=−l
Ylm(θ, φ)Y ∗lm(θ′, φ′) = δ(cos θ − cos θ′)δ(φ− φ′) .

As a consequence of completeness of an orthogonal system given by {Ylm(θ, φ)}, an arbitrary function
f(θ, φ) on a sphere can be expanded in a series over spherical harmonics

f(θ, φ) =

∞∑

l=0

m=l∑

m=−l
AlmYlm(θ, φ) .

Coefficients Alm are found by using orthogonality condition for spherical harmonics. This completes
our discussion of solving the Laplace equation in spherical coordinates.4

Thus, combining our results on the separation of variables for the Laplace operator in spherical
coordinates, we write down a general solution of the Laplace equation

ϕ(r, θ, φ) =

∞∑

l=0

l∑

m=−l

(
Almr

l +Blmr
−(l+1)

)
Ylm(θ, φ) .

In the case when there is an azimuthal symmetry, i.e. the potential does not depend on φ, the
expansion simplifies to

ϕ(r, θ) =

∞∑

l=0

(
Alr

l +Blr
−(l+1)

)
Pl(cos θ) .

Finally, if a problem at hand has a spherical symmetry, i.e. the potential depends neither on θ nor
on φ, we are left with a very simple expression, namely, the l = 0 term in the previous expansions

ϕ(r) = A+
B

r
.

One concrete problem of solving the Laplace equation in spherical coordinates will be discussed in
Tutorial X.

The Legendre equation is of the second order. Therefore, it must have another independent solution Q. It can be found in
the following way. Consider

d

dx
(1− x2

)P
′
+ l(l + 1)P = 0

4 Analogously, one can treat the case of cylindrical, elliptical or other orthogonal coordinate systems.
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Figure 3.10: Multipole expansion is an expansion of the exact expression for the scalar potential on
distances that are large in comparison with a region of charge localization.

d

dx
(1− x2

)Q
′
+ l(l + 1)Q = 0 .

Multiply the first equation by Q and another by P and subtract one from the other. We get

d

dx

[
(1− x2

)(PQ
′ −QP ′)

]
= 0 .

Integration gives
(1− x2

)(PQ
′ −QP ′) = C ,

where C is an integration constant. This can be brought to the form

d

dx

(
Q

P

)
=

C

(1− x2)P 2
.

Integration gives

Q(x) = P (x)

∫ x

∞

dy

(1− y2)P 2(y)
,

where normalization has been chosen such that Q(∞) = 0. For n integer

Qn(x) = Pn(x)

∫ x

∞

dy

(1− y2)P 2
n(y)

,

the functions Qn(x) are not polynomials because the integrand above exhibits logarithmic singularities at y = ±1. The

functions Qn(x) are called the Legendre functions of the second kind.

3.4 Multipole expansion of scalar potential

Let us assumed that electric charge is localized with the local charge density ρ(~x) inside a bounded
region V . We chose an origin of a coordinate system somewhere inside V . Let us call max |~y| = L,
where ~y is an arbitrary point in V , "the size" of our system of charges.

It is interesting to know the scalar potential ϕ(~x) outside V , that is in the region r ≡ |~x| ≥ L.
Clearly, on large distances one can treat the system of charges as a point-like charge q that creates
the potential ϕ = q/r. The multipole expansion is a representation of the exact answer

ϕ(~x) =

∫

V

dy
ρ(~y)

|~x− ~y|
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in the form of a power series, which contains all the corrections to the simplest approximation
ϕ = q/r. To build up the multipole expansion, we simply expand |~x − ~y|−1 into Taylor series in
coordinates yi of ~y:

1

|~x− ~y| =

∞∑

n=0

(−1)n

n!
yi1 · · · yin ∂i1 · · · ∂in

1

r
,

where |~y| < |~x| = r. Substituting this expansion into the expression for the potential, we get

ϕ(~x) =

∞∑

n=0

(−1)n

n!
Ti1...in ∂i1 · · · ∂in

1

r
,

where
Ti1...in =

∫
d3y ρ(~y) yi1 · · · yin .

This is a multipole expansion and Ti1...in are called the multipole momenta. The first ones are

Q =

∫
d3y ρ(~y) − monopole moment (total electric charge)

di =

∫
d3y ρ(~y) yi − dipole moment

Tij =

∫
d3y ρ(~y) yiyj − quadrupole moment

(II.3.35)

The multipole momenta have the following properties:

• Symmetry with respect to permutation of indices i1 . . . in.

• They are tensors with respect to the action of the orthogonal group.

• Transformation properties with respect to shifts of the origin: yi → y′i = yi + a. Since
d3y′ = d3y, one gets5

T ′i1...in =

∫
d3y ρ(~y)(yi1 + ai) · · · (yin + ain)

that upon opening the brackets give 2n terms. The first term is the tensor Ti1...in itself, while
all the other terms will contain a multiplied by multipole momenta of lower rank than n, i.e.;

T ′i1...in = Ti1...in + contributions of lower T .

Thus, Ti1...in do not depend on the choice of the origin of the coordinate system if and only
if all lower multipole moments vanish. In other words, only the first non-trivial moment is
invariant with respect to shifts of the origin. The first moment which is a total charge is always
invariant under shifts. The second moment, which is the dipole moment, is invariant only if
the total charge q is equal to zero.6

5Here we have taken into account that the charge density ρ(~y) is a scalar, which means that under general coordinate
transformations yi → y′i(y) it transforms as ρ′(~y′) = ρ(~y).

6 For a discrete system of charges the arguing is very similar. The dipole moment is ~d =
∑N
i=1 ei~xi , where ei is

the magnitude of a charge at some distance Ri taken from an arbitrary point, in this case chosen to be the origin.
For neutral system

∑N
i=1 di = 0 . Thus, shifting all ~Ri → ~Ri − ~a gives

~d~a =
N∑
i=1

ei (~xi − ~a) =
N∑
i=1

ei~xi − ~a
N∑
i=1

ei =
N∑
i=1

ei~xi = ~d .
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Now we discuss how to construct the multipole expansion in terms of irreducible moments. Recall
that a tensor is called irreducible if being contracted on any pair of two indices it gives zero. Irre-
ducibility means that that from a given tensor one cannot construct by contacting indices a simpler
object – a tensor of lower rank. Any tensor can be reduced to its irreducible component by adding
proper terms containing Kronecker’s delta. For, instance, for a second rank tensor one finds that its
irreducible component is

Tij = Tij −
δij
3
Tkk ,

so that the irreducible tensor of quadrupole moment is

Tij =

∫
d3y ρ(~y)

(
yiyj −

y2

3
δij

)
.

It turns out that the multipole expansion is unchanged if one replaces all multipole momenta for
their irreducible components. This follows from the fact that

δij∂i∂j
1

r
= ∆

1

r
= 0 ,

as there is no charge located at ~x. Thus, the multipole expansion can be written as

ϕ(~x) =

∞∑

n=0

(−1)n

n!
Ti1...in ∂i1 · · · ∂in

1

r
.

We further notice that

∂i
1

r
= −xi

r3
,

∂i∂j
1

r
= −δij

r3
+ (−1)(−3)

xixj

r5

(II.3.36)

and so on. In general,

∂i1 · · · ∂in
1

r
= (−1)n(2n− 1)!!

xi1 · · ·xin
r2n+1

+ . . . ,

where . . . stand for all the terms containing Kronecker’s delta. Since all such terms drop out when
being contracted with irreducible tensors, one finds that the multipole expansion takes the form

ϕ(~x) =

∞∑

n=0

(2n− 1)!!

n!
Ti1...in

xi1 · · ·xin
r2n+1

.

Explicitly,

ϕ(~x) =
q

r
+
dixi
r3

+
3Tijxixj

r5
+ . . .

The first term vanishes as 1/r as r →∞, the second one representing the dipole moment as 1/r2, the
third term as 1/r3 and so on. Thus, if a potential vanishes faster than 1/r, its first several moments
must be zero. For instance, if ϕ ∼ 1/r3, then the total charge and the dipole moment must be zero,
while the quadrupole moment must not.

If one knows an expansion of ϕ(~x) in power series in 1/r, then one can restore all irreducible moments
Ti1...in and vice versa, knowing all Ti1...in one can restore the potential. That is there is a one-to-one
map between a set of multiple moments and the corresponding potential. Knowing Ti1...inone can
also uniquely restore the potential, but the inverse is not true.
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Thus, for the potential we find

ϕ =
q

r
+
~x · ~d
r3

+ . . . .

If the system is neutral, then q = 0 and the leading term in the expansion of ϕ is the dipole term.
The electric field corresponding to the dipole potential is

~E = −~∇ (~x · ~d)

r3
=

3~n(~n · ~d)− ~d

r3
. (II.3.37)

Thus, for a neutral system the electric field at large distances from this system behaves itself as
1/r3, rather than 1/r2!

Field of an idealised point dipole. Formula (II.3.37) for ~E of a dipole is valid everywhere outside
the origin. To find the modification of this formula at the origin, one can use the following statement.
If a sphere of radius R completely encloses the charge density giving rise to the dipole moment ~d,
then the integral of the electric field ~E over the sphere is

∫

r<R

~E(~x) d3x = −4π

3
~d .

Note that this volume integral is independent on the size of the spherical region of integration
provided all the charge is inside. To be consistent with this formula, the dipole field must be written
as

~E =
3~n(~n · ~d)− ~d

r3
− 4π

3
~d δ(~r) . (II.3.38)

The delta-function does not contribute away from the origin. Its only purpose to yield the required
volume integral, with the convention that the spherically symmetric (around the origin) volume
integral of the first term is zero from the angular integration, the singularity at the origin causing
an otherwise ambiguous result. This formula treat dipoles as idealised point dipoles.

Addition theorem for spherical harmonics. Consider an expression

1

|~x− ~x′| =
1√

r2 + r′2 − 2(~x · ~x′)
=

1

r

1√
1− 2(~n · ~n′) r′r + r′2

r2

, (II.3.39)

where r = |x|, r′ = |x′|, ~n = ~x
r and ~n′ = ~x′

r′ are the unit vectors in the directions of ~x and ~x′,
respectively. We assume that r′ < r and construct an expansion of (II.3.39) in powers of r′/r. To
this end, it is convenient to remember the generating function for the Legendre polynomials, namely,

1√
1− 2xt+ t2

=

∞∑

l=0

tlPl(x) . (II.3.40)

Taking t = r′/r and ~n · ~n′ = cos γ, we compare (II.3.39) with the generating function (II.3.40), and
find

1

|~x− ~x′| =
1

r

∞∑

`=0

(
r′

r

)l
Pl(cos γ) , r′ < r . (II.3.41)

Here cos γ is a bit awkward variable, as γ is an angle between ~x and ~x′. It would be much more
convenient if the right hand side of the above expression were given in terms of the spherical co-
ordinates ~x = (r, θ, φ) and ~x′ = (r′, θ′, φ′) defined with respect to a fixed set of coordinate axes in

121



space. This goal is precisely achieved with the help of the spherical harmonic addition theorem,
which states that

Pl(cos γ) =
4π

2l + 1

m=l∑

m=−l
Y ∗lm(θ′, φ′)Ylm(θ, φ) . (II.3.42)

Substituting this expansion into (II.3.41) produces a spherical expansion for the inverse distance
referred to a single origin of coordinates

1

|~x− ~x′| =
1

r

∞∑

l=0

4π

2l + 1

(
r′

r

)l m=l∑

m=−l
Y ∗lm(θ′, φ′)Ylm(θ, φ) , r′ < r . (II.3.43)

We observe that the right hand side of the last formula has the form

∞∑

l=0

l∑

m=−l
almr

−lYlm(θ, ϕ) ,

which is a solution of the Laplace equation. This is to be expected, because the inverse distance
1/|~x − ~x′| solves the Laplace equation as soon as ~x′ 6= ~x and, for this reason, admits an expansion
in spherical harmonics. Equation (II.3.43) gives the scalar potential in a completely factorised form
in coordinates ~x and ~x′. This is useful in any integrations over charge densities, etc., where one
variable is the variable of integration and the other is the coordinates of the observation point, see
the corresponding problem in Tutorial XII.

Finally, we point out one consequence of (II.3.42). Since Pl(1) = 1 for any l, setting in (II.3.42)
θ′ = θ and φ′ = φ, so that γ = 0, we get

m=l∑

m=−l
|Ylm(θ, φ)|2 =

2l + 1

4π
.
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Chapter 4

Magnetostatics

“I have constructed an expression for
the attraction of two infinitely small
currents which was, in truth, only a
hypothesis, but the simplest one that
could be adopted and, consequently,
the one that should be tried first."

André-Marie Ampère (1820)

4.1 Laws of magnetostatics

In the case when electric field is static, i.e. it does not depend on time, the second pair of the
Maxwell equations (II.3.1) takes the form

div ~H = 0 , rot ~H =
4π

c
~j .

The first equation allows one to write
~H = rot ~A .

Substituting this in the second equation, we obtain

grad div ~A−∆ ~A =
4π

c
~j .

Because of gauge invariance the vector potential is not uniquely defined, therefore, we can subject
it to one additional constraint, which will chose to be

div ~A = 0 .

Then, the equation defining the vector potential of time-independent magnetic field takes the form

∆ ~A = −4π

c
~j .

Obviously, this is the Poisson equation, very similar to the equation for the electrostatic potential.
Therefore, the solution reads as

~A(~x) =
1

c

∫
d3x′

~j(~x′)
|~x− ~x′| .
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Now we can determine the corresponding magnetic field

~H = rot ~A =
1

c

∫
d3x′

[
~∇ 1

|~x− ~x′| ×
~j(x′)

]
=

1

c

∫
d3x′

~j(~x′)× (~x− ~x′)
|~x− ~x′|3 ,

where the bracket means the vector product1. This is the Biot-Savart law. It describes the magnetic
field produced by time-independent currents.

The integral form of Maxwell’s equation rot ~H = 4π
c
~j is called Ampère’s law. To derive it, consider

a surface S enclosed by a contour C. The flux of both sides of the last equation through S is
∫

S

(rot ~H · ~n)dS =
4π

c

∫

S

(~j · ~n)dS .

Application of the Stoks theorem gives
∮

C

~H · ~d` =
4π

c

∫

S

(~j · ~n) dS =
4π

c
I , (II.4.1)

where

I =

∫

S

(~j · ~n) dS (II.4.2)

is the full current through the surface S. Formula (II.4.1) is Ampère’s law.

4.2 Continuity equation

The charge density ρ and the current density ~j are related by the so-called continuity equation.
In fact, this equation is a compatibility condition of Maxwell’s equations. We take the Gauss law
div ~E = 4πρ and differentiate it with respect to time

4π
∂ρ

∂t
= div

∂ ~E

∂t
= div

(
c ~∇× ~H − 4π~j

)
= −4πdiv~j ,

because ~∇ · (~∇× ~H) = 0. In this way we obtain the continuity equation

∂ρ

∂t
+ div~j = 0 . (II.4.3)

Physically, the continuity equation expresses the conservation law of electric charge. First of all, the
total current that passes through a finite surface S is

I =
dQ

dt
=

∫

S

(~j · ~n) dS . (II.4.4)

If we take the surface S to be closed surrounding the volume V , then we can apply the Gauss-
Ostrogradsky theorem and write

∫

S

(~j · ~n) dS =

∫

V

d3xdiv~j . (II.4.5)

1Here we have used the formula rot f ~A = frot ~A+ [grad f, ~A].
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Because the vector ~n here points outwards from V , equation (II.4.4) written for the charge Q inside
the volume should describe its decrease and, for this reason, must be written as

−dQ
dt

= − d

dt

∫

V

d3x ρ = −
∫

V

d3x
∂ρ

∂t
. (II.4.6)

Thus, combining (II.4.5) and (II.4.6), we obtain

−
∫

V

d3x
∂ρ

∂t
=

∫

V

d3x div~j −→
∫
d3x

[
∂ρ

∂t
+ div~j

]
= 0 ,

from where, because of arbitrariness of V , we derive a local statement of charge conservation, which
is the continuity equation (II.4.3).

Let N point charges qi follow the trajectories ~xi(t). Then the charge density is

ρ(t, ~x) =
N∑

i=1

qiδ(~x− ~xi(t)) . (II.4.7)

Let us find the current density produced by the flow of these charges. We have

∂ρ

∂t
=

N∑

i=1

qi
∂

∂xi,k
δ(~x− ~xi(t))

dxi,k
dt

= −
N∑

i=1

qi
∂

∂xk
δ(~x− ~xi(t))vi,k ,

where xi,k id the k-th component of ~xi and vi,k = dxi,k/dt is the k-th component of the velocity ~vi
of i-th particle. The last formula can be written as

∂ρ

∂t
= −

N∑

i=1

qi~vi · ~∇δ(~x− ~xi) = −~∇ ·
N∑

i=1

qi~viδ(~x− ~xi) .

Comparing this equation with the continuity equation (II.4.3), we conclude that

~j(t, ~x) =

N∑

i=1

qi~vi(t)δ(~x− ~xi(t)) , ~vi =
d~xi
dt

. (II.4.8)

Thus, equations (II.4.7) and (II.4.8) represent the charge and current density for a system of moving
charges satisfying the continuity equation.

4.3 Magnetic dipole moment

Free magnetic charges do not exist. The really existing object which plays the basic role2 in study of
magnetic phenomena is the so-called magnetic dipole. A small magnetic dipole is a magnetic arrow
(like the compass arrow) which aligns along the direction of an external magnetic field.

Consider the magnetic field created by a system of stationary moving charges on distances large in
comparison with the size of this system. We choose a center of a reference frame somewhere inside
the system of moving charges. Then x′ � x and we can expand

1

|~x− ~x′| =
1

|~x| +
(~x · ~x′)
|~x|3 + . . .

2The same role as elementary electric charge in electrostatics.
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Therefore, for the vector potential we get

Ai(~x) =
1

c|~x|

∫
ji(~x

′)d3x′ +
1

c|~x|3 ·
∫
ji(~x

′)(~x · ~x′)d3x′ + · · ·

a b c d

R12 R12 R12 R12

Figure 4.1: Force between magnetic dipoles depends not only on the distance between them
but also on their mutual orientation: a) magnetic dipoles attract (UM < 0), b) and c) mag-
netic dipoles repeal UM > 0), d) the sign of energy UM is determined by the general formula
UM = ( ~M1· ~M2)−3( ~M1·~n12)( ~M2·~n12)

R3
12

, ~n12 =
~R12

R12
.

From the continuity equation ∂ρ
∂t + div~j = 0 we have div~j = 0. Taking this into account, for any

function f(x) we can write

0 =

∫
f(x′) div~j d3x′ = −

∫
(~∇f ·~j) d3x′ ,

where we have integrated by parts. Picking now f = xi, we get (~∇xi)j = δij , so that (~∇xi ·~j) = ji.
Thus, we arrive at ∫

ji(x
′)d3x′ = 0 for any i .

This is also intuitively clear, because the current is assumed to have vanishing normal components
everywhere on the surface S – the current is concentrated in the volume surrounded by S and never
flows out through S. Hence, the leading term of the vector potential is

~A(~x) =
1

c|~x|3 ·
∫
~j(x′)(~x · ~x′) d3x′

To make further progress, we recall an identity

[~a, [~b,~c]] = (~a · ~c)~b− (~a ·~b)~c ,

which allows one to write
(~x · ~x′)~j = (~x ·~j)~x′ − ~x× (~x′ × j) .

It turns out that the integral from (~x ·~x′)~j is equal up to the minus sign to the integral from (~x ·~j)~x′.
Indeed, since div~j = 0, we have

∫
d3x′ jkx

′
i =

∫
d3x′ div (x′k~j)x

′
i

by parts
= −

∫
d3x′ x′k(~j · grad ′)x′i = −

∫
d3x′ x′kji .

From here we deduce that
∫

d3x′ (~x ·~j)x′i = −
∫

d3x′ (~x · ~x′) ji ,

or, in the vector form, ∫
d3x′ (~x ·~j) ~x′ = −

∫
d3x′ (~x · ~x′)~j .
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Therefore, we arrive at
~A = − ~x

|~x|3 ×
1

2c

∫
d3x′ ~x′ ×~j(~x′) .

Define the density of the magnetic moment as

~M =
1

2c
~x′ ×~j(x′)

and the magnetic moment as

~M =

∫
d3x′ ~M(x′) =

1

2c

∫
d3x′ ~x′ ×~j(~x′) .

We, therefore, find

~A(~x) =
~M × ~x
|~x|3 .

This is the leading term in the expansion of the vector potential for a bounded stationary current
distribution. As a result, the magnetic field of a magnetic dipole is

~H = rot ~A =
3~n(~n · ~M)− ~M

|~x|3 ,

where ~n is the unit vector in the direction of ~x. This expression for the magnetic field coincides with
the formula for the electric field of an electric dipole.

4.4 Gyromagnetic ratio. Magnetic moment of electron.

Suppose that the current I flows over a closed flat loop C on an arbitrary shape. For the magnetic
moment we have

~M =

∫
d3x′ ~M(x′) =

1

2c

∫
d3x′ ~x′ ×~j(x′) =

1

2c

∫
dS′d` ~x′ ×~j(x′) ,

where dS′ is an area differential corresponding the transverse section of the (thin) loop C. Since the
current I is defined as

I =

∫

S

(~j · ~n)dS ,

we have
~M =

1

2c

∫
dS′ ~x′ × (~j(x′) · ~n)d~̀

so that the magnetic moment can be written in the form

~M =
I

2c

∮

C

~x× d~̀ .

Since ~x× d~̀= 2 d~S, where d~S is the area of an elementary triangle formed by the radii drawn from
the origin of the coordinate system to the end points of the element d~̀, the integral above is equal
to the total area S enclosed by the current loop C. Therefore,

| ~M | = IS

c

independently of the shape of the contour. Here | ~M | is a magnitude of the magnetic dipole moment
of a current loop.
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If the current is formed by particles of masses mi with charges ei moving with velocities ~vi � c,
then the magnetic moment can be expressed via the angular momentum. We have

~j(x) =
∑

i

ei~viδ(~x− ~xi) ,

where ~xi is the radius-vector of i’th particle. In this case the magnetic moment is

~M =
1

2c

∑

i

ei(~xi × ~vi) =
∑

i

ei
2cmi

(~xi ×mi~vi) =
∑

i

ei
2cmi

[~xi, ~pi]︸ ︷︷ ︸
~Li

,

where ~Li = [~xi, ~pi] is the angular momentum of the i’th particle and we have used the fact that for
v � c the expression m~v coincides with the particle momentum ~p. If for all the particles the ratio
of charge to mass is the same, ei/mi ≡ e/m, then

~M =
e

2mc

∑

i

~Li =
e

2mc
~L ,

where ~L is the total angular momentum of a system of particles. The relation

~M =
e

2mc
~L ⇒ M

L
=

e

2mc

is an important classical relation between the magnetic and the angular momenta. This relation is
remarkable – for a loop of current it expresses the ratio of two macroscopic quantities (the magnetic
moment of the current loop and the total angular momentum of electrons) via a combination of
microscopic quantities characterizing the charge carriers! The quantity

γ =
M

L
=

e

2mc

is called a gyromagnetic ratio. In a conductor charge carriers are electrons, i. e.

γ =
e

2mec
.

Gyromagnetic ratio is often measured in units of γ = e
2mec

, in particular, γ is taken for unity. Indeed,
if the current in a conductor would be carried by ions rather than electrons, then the gyromagnetic
ratio will be thousand times less. It is difficult to imagine that gyromagnetic ratio could be bigger
than one – electrons the lightest particles carrying the charge!
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Chapter 5

Relativistic Mechanics

“The special theory of relativity owes
its origin to Maxwell’s equations of
the electromagnetic field."

Albert Einstein (1949)

5.1 Relativity principle

5.1.1 Newton’s relativity principle

In order to describe a dynamical system one has to choose a reference frame. The reference frame is
a system of coordinates and a clock which measures the time in this coordinate system, see Fig. 5.1.
In mechanics one introduces the notion of an intertial frame. In such frames a free motion (i.e. the
motion in the absence of forces) happens with a uniform velocity. Excluding trivial translations of
coordinates, any two inertial frames are related by an orthogonal transformation, i.e. by a rotation
with possible reflections of coordinate axes.

Experience shows that that the relativity principle is valid. According to this principle, all laws of
Nature are the same in all inertial frames. In other words, the equations which encode the laws
of Nature are invariant with respect to transformations from one inertial system of coordinates to
another. This means that an equation encoding a physical law when expressed through spatial
coordinates and time in different inertial frames must have the one and the same form.

In order to give a mathematical description of the relativity principle, one has to find formulas
which relate special coordinates and time in different inertial frames. In Newtonian mechanics it
was assumed for a long time that inertial frames are related by Galilean transformations

~x′ = R(~x− ~vt)
t′ = t

(II.5.1)

Here R is a matrix of orthogonal transformations of coordinates.

5.1.2 Einstein’s relativity principle

In classical mechanics interaction of particles is described by means of potential energy, which is
a function of coordinates of interacting particles. Such a description is based on an assumption of
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Figure 5.1: Reference frame – a coordinate system and a clock.

instantaneous interactions. Indeed, forces which act on particles depend only on the positions of
particles in the same moment when these positions are measured. Any change in the motion of any
of the particles immediately reflects on the others with no time delay. On the other hand, experience
shows that instantaneous interactions are impossible in Nature. Therefore, any mechanics which is
based on the principle of instantaneous interactions has certain limitations. If something happens
to one body, the time is needed for the corresponding changes to reach another body. Therefore,
there must exist a maximal velocity of propagating the interactions and it must be the same in all
inertial frames. This universal velocity happens to coincide with the speed of light in vacuum and
it is equal to

c = 2.99792458 · 108 m/sec.

This is a fundamental physical constant.1.

Conjunction of the relativity principle with the finiteness of the speed of interaction propagation
(speed of light) is called Einstein’s relativity principle (Einstein, 1905). The mechanics which is based
on Einstein’s relativity principle is called relativistic. The mechanics which arises in the limiting
case when formally c→∞ is called Newtonian or classical.

Three fundamental effects of Special Relativity are

1) Time delay measured by a moving clock;

2) Lorentz contraction of the length of a moving body;

3) Abberation of light (deviation of light when passing from one to another inertial system).
1Before the 17th century it was generally thought that the light is transmitted instantaneously. Galileo was the

first one who doubted it. The first measurement has been done by Roemer in 1676 (observations of the moons of
Jupiter). The first measurement on Earth has been done by Fizeau in 1849. He used a beam of light reflected from a
mirror 8km away. He found the value 301300 km/sec.
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Observer

O

·z }| {vt

x

| {z }
x0

t

Event

Figure 5.2: Galilean boost in two dimensions. The oblique (red) line represents the trajectory of the
origin of the reference frame M ′ which moves with velocity v in the x-direction with respect to the
reference frame M . An event which happens in M at the position x at time t occurs at x′ at time
t′ = t in the moving frame M ′. Hence, x′ = x− vt.

5.2 Lorentz group

Here we introduce Lorentz transformations as transformations between two inertial frames that
preserve the length of the 4-interval between two events. We then show that this transformations
form a Lie group known as the Lorentz group, and we discuss the structure of this group from various
viewpoints.

5.2.1 Defining Lorentz transformations

We will use the notion of "event". Every event is characterized by the place (coordinates) where it
happened and by the time when it happened. Define the so-called interval between two events

s12 = c2(t2 − t1)2 − (x2 − x1)2 − (y2 − y1)2 − (z2 − z1)2 .

If two events are close to each other we have an infinitezimal interval:

ds2 = c2dt2 − dx2 − dy2 − dz2 .

The fact that the speed of light is the one and the same constant in all inertial frames leads to the
fact that the infinitezimal interval between two events is also the same in all inertial frames

ds2 = ds′2 .

From the equality of infinitezimal intervals, the equality of finite intervals follows s = s′.

The interval between two events is the same in all inertial frames, i.e. it is invariant under
transformations from one inertial frame to another. This invariance encodes the constancy of the
speed of light.
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The intervals can be naturally classified as follows. Introduce

`212 = (x2 − x1)2 + (y2 − y1)2 + (z2 − z1)2.

Then, s2
12 = c2t212 − `212 and the equality of the intervals in two different inertial frames is expressed

as
s2

12 = c2t212 − `212 = c2t′
2
12 − `′

2
12 .

• Time-like interval. This is an interval for which s2
12 > 0, i.e. the interval is real. For such an

interval there exists an inertial system for which the two events happen in the one and the
same space point, i.e. `′212 = 0. If two events happened to the one and the same body then
the interval between them is always time-like. Indeed, the distance `12 = vt12 which the body
passes cannot be bigger than ct12 as v < c.

Remember: Real intervals are time-like. They describe events which happen to a (massive)
body.

• Space-like intervals. For these intervals s2
12 < 0, i.e. they are imaginary. For a space-like

interval one can always find an inertial system in which the corresponding two events happened
as the same moment of time, so that t′12 = 0. The distance between these events is `′12 = is12.

• Light-like intervals (null intervals). For these intervals s12 = 0.

It is convenient introduce the diagonal 4× 4-matrix

ηµν = ηµν = diag(+1,−1,−1,−1) .

It is called the Minkowski metric and it defines a quadratic form

ds2 = ηµνdx
µdxν ,

which is an infinitezimal interval and we consider the index µ running from 0 to 3, so that x0 = ct
and x1 ≡ x, x2 ≡ y, and x3 ≡ z stand for three spacial coordinates.

Thus, the set (ct, x, y, z) can be considered as components of a vector in a four-dimensional space.
The square of the "length" of the vector is

x2 ≡ (x0)2 − (x1)2 − (x2)2 − (x3)2 = ηµνx
µxν .

Geometry in which the length of a vector is given by the above formula is called pseudo-euclidean.

According to the discussion above, the transformations from one inertial frame to another must
be such that they preserve the interval. In the four-dimensional space they can be only the global
shifts of the coordinate system

xµ → xµ + aµ

or rotations
xµ → Λµνx

ν .

Under the rotations the quadratic form transforms as

x′2 = ηµνΛµαx
αΛνβx

β = ηµνΛµαΛνβx
αxβ = x2 ,

so that the transformation matrices must satisfy the requirement

ηµνΛµαΛνβ = ηαβ .

The matrices satisfying this requirement are called Lorentz transformations.
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5.2.2 Structure of the Lorentz group

We recall that a definition of a group was given in subsection 2.2.2. An important class of groups
constitute Lie groups. A Lie group is a group which is also a smooth manifold.2

Let us show that Lorentz transformations form a group. In the matrix form the Lorentz transfor-
mations can be written as

ΛtηΛ = η .

Any matrix Λ which satisfies this relation (defining relation) defines a Lorentz transformation.3
Suppose we have two such matrices

Λt1ηΛ1 = η , Λt2ηΛ2 = η ,

then their product is also satisfies the defining relation of the Lorentz group:

(Λ1Λ2)tη(Λ1Λ2) = Λt2(Λt1ηΛ1)Λ2 = Λt2ηΛ2 = 1 .

Identity matrix is a (trivial) Lorentz transformation. Finally, any Λ has an inverse which also a
Lorentz transformation. Indeed,

det(ΛtηΛ) = det(Λ)2detη = detη =⇒ detΛ = ±1 .

This means that Λ is non-degenerate. Then, from the defining relation4

Λ−1 = ηΛtη .

Thus,
(Λ−1)tηΛ−1 = (ηΛtη)tη(ηΛtη) = ΛηΛt = η ,

that is Λ−1 is a Lorentz transformation. Thus, Lorentz transformations form a group. We have also
shown that if Λ is a Lorentz transformation, then

Λ−1 , Λt , (Λt)−1

are also Lorentz transformations.

Note that the defining relation of the Lorentz group implies that

ηµνΛµ0 Λν0 = (Λ0
0)2 − (Λi0)2 = 1 ,

that is (Λ0
0)2 = 1 + (Λi0)2 ≥ 1. Thus, for any Lorentz transformation either Λ0

0 ≥ 1 or Λ0
0 ≤ −1.

Topological structure of the Lorentz group

The Lorentz group is a 6-dimensional non-compact Lie group O(1, 3) which consists of four connected
components (four topologically separated pieces), each of them is not simply connected, see Fig.
5.3. To understand this topological structure of the Lorentz group, let us notice that a Lorentz
transformation may or may not

• reverse the direction of time (or more precisely, transform a future-pointing time-like vector
into a past-pointing one),

2In other words, group elements of a Lie group can be continuously parametrised by a set of parameters.
3Would η be identity matrix, then the relation ΛtΛ = 1 would define the group of orthogonal transformations.
4It follows from Λ−1 = ηΛtη by multiplying it from the right with Λ that the following relation is also true

ΛηΛt = η. This shows that matrix Λt is also a Lorentz transformation.
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Λ0
0 ≥ 0, det Λ = 1

Λ0
0 ≥ 0, det Λ = − 1 Λ0

0 ≤ 0, det Λ = − 1

Λ0
0 ≤ 0, det Λ = 1

P T

PT

Figure 5.3: Four connected components of the Lorentz group. The component with Λ0
0 ≤ 1 and

detΛ = 1 is a subgroup of proper orthochronous transformations SO+(1, 3) (the restricted Lorentz
group).

• reverse the orientation of a four-dimensional reference frame.

Lorentz transformations with Λ0
0 > 0 preserve the direction of time and are called orthochronous.

The product of two orthochronous transformations is also an orthochronous transformation. To see
this, we notice that (Λ0

0)2 = 1 + (Λi0)2 ≥ 1 implies that |Λ0
0| > ||Λi0|| and analogously, by changing

Λ → Λt, one gets |Λ0
0| > ||Λ0

i ||, where Λi0 and Λ0
i are understood as vectors with components

i = 1, 2, 3. For a product of two transformations Λ and Λ′ one has

(ΛΛ′)0
0 = Λ0

0Λ′00 + Λi0Λ′0i .

By the Cauchy-Bunyakovsky-Schwarz inequality5, one obtains that

|Λi0Λ′0i | ≤ ||Λi0|| ||Λ′0i || < |Λ0
0||Λ′00 | = Λ0

0Λ′00 .

Hence, (ΛΛ′)0
0 > 0 if both Λ0

0 and Λ′00 are positive. The subgroup of orthochronous transformations
is often denoted O+(1, 3).

Lorentz transformations which preserve orientation are called proper, and as linear transforma-
tions they have determinant +1. (The improper Lorentz transformations have determinant -1.) The
subgroup of proper Lorentz transformations is denoted SO(1, 3).

The identity component of the Lorentz group, i.e. the component containing the identity element,
is the set of all Lorentz transformations preserving both orientation and the direction of time. It
is the proper, orthochronous Lorentz group, which is sometimes also called the restricted Lorentz
group SO+(1, 3).

Every element in O(1, 3) can be written as the semidirect product of a proper, orthochronous
transformation and an element of the discrete group

{1, P, T, PT}
5For any two vectors x and y: |(x, y)| ≤ ||x||||y||.
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where P and T are the space inversion and time reversal operators:

P = diag(1,−1,−1,−1)

T = diag(−1, 1, 1, 1)

The four elements of this isomorphic copy of the Klein four-group label the four connected
components of the Lorentz group.

As stated above, the restricted Lorentz group is the identity component of the Lorentz group.
This means that it consists of all Lorentz transformations which can be connected to the identity by
a continuous curve lying in the group. The restricted Lorentz group is a connected normal subgroup6
of the full Lorentz group with the same dimension (in this case, 6 dimensions).

Structure of Lorentz transformations: spatial rotations and boosts

Introduce two four-vectors in the original and a Lorentz-transformed coordinate systems, respec-
tively,

x =

(
x0

~x

)
, x′ =

(
x′0

~x′

)
.

The relation is x′ = Λx and x = Λ−1x′. In what follows it is convenient to parametrize

Λ =

(
a vt1
v2 S

)
, Λt =

(
a vt2
v1 St

)
, Λ−1 = ηΛtη =

(
a −vt2
−v1 St

)
.

Here a is a scalar, v1 and v2 are vectors and S is a 3×3 matrix. We recall that a matrix Λ of Lorentz
transformation satisfies the conditions ΛtηΛ = η and, as a consequence, ΛηΛt = η. In particular,
ΛtηΛ = η implies
(

1 0
0 −1

)
=

(
a vt2
v1 St

)(
1 0
0 −1

)(
a vt1
v2 S

)
=

(
a2 − v2

2 avt1 − vt2S
av1 − Stv2 v1 ⊗ vt1 − StS

)
.

Thus, we find three conditions

a2 − v2
2 = 1 , avt1 − vt2S = 0 , v1 ⊗ vt1 − StS = −1 .

The change Λ→ Λt gives

a2 − v2
1 = 1 , av2 − Stv1 = 0 , v2 ⊗ vt2 − StS = −1 .

Now we are going to clarify the meaning of the vectors v1 and v2 and the matrix S. To this end,
consider the transformation x = Λ−1x′. Explicitly, it is

x0 = ax′0 − (~v2~x
′) ,

~x = −~v1x
′0 + St~x′.

In the moving coordinate system M ′, it’s origin O′ has coordinates ~x′ = 0, therefore, the formulae
before takes the form

x0 = ax′0 ,

~x = −~v1x
′0 .

6A subgroup N ⊂ G is called normal, if gNg−1 ⊂ N for any g ∈ G.
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Dividing second formula by the first, we get ~x
x0 = ~v

c = −~v1

a , where ~v is the velocity of O′ with respect
to the stationary coordinate system M . Thus, ~v1 = −a~vc . Further, from the condition a2 − v2

1 = 1
it follows that

a = ± 1√
1− v2

c2

.

We chose “+" sign here which corresponds considering orthochronous transformations Λ0
0 ≥ 1.

Now we turn our attention to the equation

StS = 1 + v1 ⊗ vt1 .

Explicitly, the matrix 1 + v1 ⊗ vt1 has the following matrix elements

(1 + v1 ⊗ vt1)ij = δij + (v1)i(v1)j .

Consider for the moment another matrix

Q ≡ (1 + α v1 ⊗ vt1)ij = δij + α (v1)i(v1)j , .

where α is an arbitrary number. Compute its squire

Q2
ij = (δik + α (v1)i(v1)k)(δkj + α (v1)k(v1)j) = δij +

(
2α+ α2v2

1

)
(v1)i(v1)j .

Thus, we see that if we subject the coefficient α to the condition

α2(a2 − 1) + 2α = 1 ,

then the following property will be satisfied

1 + v1 ⊗ vt1 = Q2 .

Solving the quadratic equation for α, one finds

α =
1

1± a .

We pick the solution with “+” and denote the corresponding Q by Q+. Explicitly,

Q+ij = δij +
1

1 + a

a2

c2
vivj = δij +

a− 1

v2
vivj .

The relation StS = Q2
+ can be written as Q−1

+ StSQ−1
+ = (SQ−1

+ )t(SQ−1
+ ) = 1, since Q+ is a

symmetric matrix. Hence R = SQ−1
+ is an orthogonal matrix, as RtR = 1. Furthermore, since now

S = RQ+, we get that

vt2 =
1

a
vt1S

t =
1

a
vt1Q+R

t =
1

a
vt1(1 + α v1 ⊗ vt1)Rt =

1

a
(1 + α(a2 − 1))vt1R

t = vt1R
t ,

that is v2 = Rv1. To summarize, we have established that generic matrix Λ has the following
structure

Λ =




1√
1− v2

c2

− 1√
1− v2

c2

vt

c

− 1√
1− v2

c2

R v
c RQ+


 .
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We immediately see that this 4× 4 matrix factorizes into a product of the following matrices

Λ =




1 0

0 R







1√
1− v2

c2

− 1√
1− v2

c2

vt

c

− 1√
1− v2

c2

v
c 1 +

(
1√

1− v2

c2

− 1
)
v⊗vt
v2


 ,

where 1 signifies 3 × 3 identity matrix. The first matrix is just an orthogonal transformation of a
three-dimensional vector of spacial coordinates, while the second matrix is the Lorentz boost. With
this matrix Λ at hand, we find for x′ = Λx the following explicit formulae, where we use that x0 = ct
and x′0 = ct′,

t′ =
t− (~x~v)

c2√
1− v2

c2

,

~x′ = R


~x− ~vt√

1− v2

c2

+


 1√

1− v2

c2

− 1


 ~v(~v~x)

v2


 .

(II.5.2)

These are Lorentz transformations7 which describe how coordinates (~x, t) of an even in a stationary
reference frame transform to coordinates (~x′, t′) of a reference frame which moves with respect to
the stationary frame with an arbitrary velocity ~v. Note that for c→∞, i.e. when v � c, the factor√

1− v2

c2 → 1 and the Lorentz transformations reduce to the Galilean ones:

t′ = t

~x′ = R(x− vt) .

Inverse Lorentz transformations are obtained from x = Λ−1x′, but they can be alternatively obtained
from direct transformations above by changing primed indices for unprimed and changing the sign
of velocity ~v. One obtains

t =
t′ + (~x′~v)

c2√
1− v2

c2

,

~x = R


~x′ + ~vt′√

1− v2

c2

+


 1√

1− v2

c2

− 1


 ~v(~v~x′)

v2


 .

(II.5.3)

It is of interest to see what the second solution with α = 1
1−a gives. Denoting the corresponding

Q by Q−, we get
StS = Q2

− = Q2
+

or
Q−1
− StSQ−1

− = Q−1
+ StSQ−1

+ = 1

which gives rise to two orthogonal matrices R+ = SQ−1
+ and R− = SQ−1

− . Obviously, R+ and R−
differ from each other by an orthogonal transformation R−1

− R+. The nature of this transformation

7Regrouping terms, the expression for x′ can be also written in the following form

~x′ = R

 [~v, [~x,~v]]√
1− v2

c2

− ~v
t− (~v~x)

v2√
1− v2

c2

 .
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can be understood by computing its determinant

det(R−1
− R+) = det(Q−S−1SQ−1

+ ) =
detQ−
detQ+

.

The direct computation shows that for Q(α), the corresponding determinant is detQ(α) = 1+αv2 =
1 + α(a2 − 1). Thus, detQ+ = a and detQ− = −a, so that det(R−1

− R+) = −1 contains a reflection
of the coordinate axes. Hence, we see that the choice of ±a and α = 1

1±a precisely give rise to four
connected components of the Lorentz group.

Note that the simplest example of the Lorentz transformation is a rotation in the tx-plane. This rotation must
leave the interval (ct)2 − x2 invariant. The relation between the old and the new coordinates is described by the
formulas

x = x′ coshψ + ct′ sinhψ , ct = x′ sinhψ + ct′ coshψ .

Indeed,

(ct)2 − x2 = (x′ sinhψ + ct′ coshψ)2 − (x′ coshψ + ct′ sinhψ)2 = (ct′)2 − x′2 .
Substituting here the coordinate x′ = 0 of the center of the moving system, we get

x = ct′ sinhψ , ct = ct′ coshψ =⇒ tanhψ =
x

ct
=
v

c
.

From here we find

sinhψ =
v
c√

1− v2

c2

, coshψ =
1√

1− v2

c2

.

and, therefore,

x =
x′ + vt′√

1− v2

c2

, y = y′ , z = z′ , t =
t′ + v

c2
x′√

1− v2

c2

,

This transformation is called the Lorentz boost as it describes the change of coordinates and time due to boosting
one coordinate system with respect to the other. The reader can verify that this particular example fits our general
discussion of arbitrary Lorentz transformations.

Addition of velocities

Suppose in the moving frame M ′ a particle is moving with velocity ~u, that is ~u = dx′

dt′ . We want to
find its velocity in the stationary frame M . To this end, we consider the differentials of the inverse
Lorentz transformations

dt =
dt′ + ( ~dx

′
~v)

c2√
1− v2

c2

= dt′
1 + (~u~v)

c2√
1− v2

c2

,

d~x = R


d~x′ + ~vdt′√

1− v2

c2

+


 1√

1− v2

c2

− 1


 ~v(~vd~x′)

v2


 .

Dividing the differential dx by dt, we find the velocity ~w in the stationary frame (R = 1)

~w =
d~x

dt
=

~u+ ~v√
1− v2

c2

+

(
1√

1− v2

c2

− 1

)
~v(~v~u)
v2

1+
(~u~v)

c2√
1− v2

c2

.

This is the law for addition of velocities in the relativistic case. In the non-relativistic limit c→∞,
it reduces to the Galilean law: ~w = ~u+ ~v.
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Lie algebra of the Lorentz group

First we recall the basic facts about the rotation group in three dimensions and then concentrate
our attention on certain aspects of the Lorentz group.

Any rotation has the form



x′

y′

z′


 = R




x
y
z


 or r′ = Rr .

Under rotations the distance to the origin remains unchanged, that is

x′2 + y′2 + z′2 = x2 + y2 + z2 , or r′tr′ = rtr .

This means that
rtRtRr = rtr i .e. RtR = 1 .

This means that R is an orthogonal 3× 3 matrix. Orthogonal matrices form a group called O(3).

Rotation of a vector on a finite angle θ around z-axis is



V ′x
V ′y
V ′z


 =




cos θ sin θ 0
− sin θ cos θ 0

0 0 1






Vx
Vy
Vz




so that

Rz(θ) =




cos θ sin θ 0
− sin θ cos θ 0

0 0 1


 .

Analogously, the rotation matrices around the axes x and y have the form

Rx(φ) =




1 0 0
0 cosφ sinφ
0 − sinφ cosφ


 , Ry(ψ) =




cosψ 0 − sinψ
0 1 0

sinψ 0 cosψ


 .

These matrices do not commute between themselves:

Rz(θ)Rx(φ) 6= Rx(φ)Rz(θ) .

This means that the rotation group is a non-abelian group. That is also a Lie group, i.e. a continuous
group with infinite number of elements, because the values of the group parameters (angles) form a
continuum. Any rotation is determined by three parameters: the matrix R has 9 elements and the
relation RtR = 1 imposes on them 6 conditions. These three parameters can be chosen to be the
Euler angles. Three parameters give rise to three generators defined as

Jz =
1

i

dRz(θ)

dθ
|θ=0 =




0 −i 0
i 0 0
0 0 0


 ,

Jx =
1

i

dRx(φ)

dφ
|φ=0 =




0 0 0
0 0 −i
0 i 0


 ,

Jy =
1

i

dRy(ψ)

dψ
|ψ=0 =




0 0 i
0 0 0
−i 0 0


 .
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These generators are hermitian. The infinitezimal rotations are given by

Rz(δθ) = 1 + iJzδθ , Rx(δφ) = 1 + iJxδφ , Ry(δψ) = 1 + iJyδψ .

Commutators of two generators

[Jx, Jy] = iJz + cyclic permutations

coincide with the commutation relations of angular momentum. Rotation on a finite angle around
z-axis is

Rz(θ) = eiJzθ =




cos θ sin θ 0
− sin θ cos θ 0

0 0 1


 .

If one considers a rotation around an arbitrary axis ~n, then

R~n(θ) = ei(
~J·~n)θ .

Now we turn our attention to the Lorentz group. Mathematically, the Lorentz group may be
described as the generalized orthogonal group O(1, 3), the matrix Lie group which preserves the
quadratic form

(ct, x, y, z)→ (ct)2 − x2 − y2 − z2 .

This quadratic form is the metric tensor of Minkowski spacetime, so this definition is simply a
restatement of the fact that Lorentz transformations are precisely the linear transformations which
are also isometries of Minkowski spacetime.8

The restricted Lorentz group is generated by ordinary spatial rotations and Lorentz boosts (which
can be thought of as hyperbolic rotations in a plane that includes a time-like direction). The set
of all boosts, however, does not form a subgroup, since composing two boosts does not, in general,
result in another boost. Indeed, introducing the identification

x0 = ct , x1 = x, x2 = y, x3 = z

we can write the Lorentz boost as



x0′

x1′

x2′

x3′


 =




coshϕ sinhϕ 0 0
sinhϕ coshϕ 0 0

0 0 1 0
0 0 0 1







x0

x1

x2

x3




The generator corresponding to the infinitezimal boost is defined as

Kx =
1

i

dBx(ϕ)

dϕ
|ϕ=0 =




0 −i 0 0
−i 0 0 0
0 0 0 0
0 0 0 0


 .

The other boost generators are

Ky =




0 0 −i 0
0 0 0 0
−i 0 0 0
0 0 0 0


 , Kz =




0 0 0 −i
0 0 0 0
0 0 0 0
−i 0 0 0


 .

8The Lorentz group is a subgroup of the Poincaré group, the group of all isometries of Minkowski spacetime.
The Lorentz transformations are precisely the isometries which leave the origin fixed. Thus, the Lorentz group is an
isotropy subgroup of the isometry group of Minkowski spacetime. For this reason, the Lorentz group is sometimes
called the homogeneous Lorentz group while the Poincaré group is sometimes called the inhomogeneous Lorentz group.
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r

Figure 5.4: The simplest form of action is given by the length of the
space-time interval between points A and B.

The set of all rotations forms a Lie subgroup isomorphic to the ordinary rotation group SO(3). The
usual rotation generators now look like

Jx =




0 0 0 0
0 0 0 0
0 0 0 −i
0 0 i 0


 , Jy =




0 0 0 0
0 0 0 i
0 0 0 0
0 −i 0 0


 , Jz =




0 0 0 0
0 0 −i 0
0 i 0 0
0 0 0 0


 .

One can compute the commutators

[Kx,Ky] = −iJz + cyclic permutations

[Jx,Kx] = [Jy,Ky] = [Jz,Kz] = 0 (II.5.4)
[Jx,Ky] = iKz + cyclic permutations

Boosts do not form a group; commutator of two boosts is a rotation.

A boost in some direction, or a rotation about some axis, each generate a one-parameter subgroup.
An arbitrary rotation is specified by 3 real parameters, as is an arbitrary boost. Since every proper,
orthochronous Lorentz transformation can be written as a product of a rotation and a boost, it takes
6 real numbers (parameters) to specify an arbitrary proper orthochronous Lorentz transformation.

The 6 generators K and J can be combined into one skew-symmetric matrix Mab with the
following commutation relations

[Mµν ,Mρλ] = i(ηµρMνλ − ηνρMµλ − ηµλMνρ + ηνλMµρ)

representing the Lie algebra relations of the Lorentz group.

5.3 Relativistic particle

Let us first revisit some of the basics of special relativity written using tensor notation. The
Minkowski metric ηµν that we will use has the signature (+,−,−,−) and we will use the con-
vention that the Latin indices run only over the space coordinates (i.e. i, j, k... = 1, 2, 3), whereas
the Greek indices will include both time and space coordinates (i.e. µ, ν, σ, ρ... = 0, 1, 2, 3). Addi-
tionally, in special relativity we will have to distinguish between 3-vectors (those with only space
components) and 4-vectors (having both space and time components). The convention that we will
use is that ~A will denote a 3-vector, whereas Aµ will denote a 4-vector.

Using these definitions, we can define the Lorentz invariant relativistic interval given by the
expression

ds2 = dxµdx
µ = c2dt2 −

(
dxi
)2
. (II.5.5)

The action for a relativistic particle has the following form

S = −α
∫ b

a

√
ds2 = −α

∫ b

a

ds .
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Reparametrisation invariance. Suppose we parametrise the trajectory of a particle with a pa-
rameter τ : xµ = xµ(τ). Then the action can be written as

S = −α
∫ τ2

τ1

√
ẋµẋµ dτ , (II.5.6)

where ẋµ = dxµ

dτ . The new feature of this action in comparison to the case of non-relativistic
mechanics is that this action is invariant under reparametrizations of τ :

δxµ = ξ(τ)∂τx
µ as long as ξ(τ1) = ξ(τ2) = 0 .

Let us show this

δ(
√
ẋµẋµ) =

1

2
√
ẋµẋµ

(2ẋνδẋν) =
1√
ẋµẋµ

ẋν∂τ (ξẋν) =

=
1√
ẋµẋµ

[
ẋν ẋν ξ̇ + ξẋν ẍν

]
=

1√
ẋµẋµ

ẋν ẋν ξ̇ + ξ∂τ (
√
ẋµẋµ)

=
√
ẋµẋµξ̇ + ξ∂τ (

√
ẋµẋµ) = ∂τ (ξ

√
ẋµẋµ) .

Therefore, we arrive at

δS = −α
∫ τ2

τ1

dτ ∂τ (ξ
√
ẋµẋµ) = −α

[
ξ
√
ẋµẋµ

]
|τ=τ2
τ=τ1 = 0 ,

i.e. the action is indeed invariant w.r.t. the local reparametrisation transformations. Physically,
the reparametrisation invariance means that the value of the action does not depend on with which
velocity one runs over the trajectory connecting the initial and final points. This independence is
due to the fact that the action S is a true geometric object, namely, the length of the trajectory
between the initial and final points.

Non-relativistic limit. Since the action does not depend on the choice of a local parameter, we
can pick up one. The convenient choice is the so-called static choice, also called static gauge, where
the variable t ≡ τ is chosen to parametrise a trajectory as

x0 = ct , xi = xi(t) .

With this choice we can now establish the physical meaning of the parameter α. First, we have

dxµ

dt
= (c,~v) , ds =

√
c2 − ~v2 = c

√
1− ~v2

c2
.

Therefore, the action becomes

S = −αc
∫ t2

t1

√
1− ~v2

c2
dt ,

which corresponds to the following lagrangian

L = −αc
√

1− ~v2

c2
. (II.5.7)

The non-relativistic limit corresponds to taking ~v2

c2 � 1. Expanding the lagrangian in this limit, we
find

L ≈ −αc
(

1− ~v2

2c2
+ · · ·

)
≈ −αc+ α

~v2

2c
. (II.5.8)
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If we want to recover the usual form of the lagrangian L = T −U where for of a free non-relativistic
particle T = m~v2

2 is the kinetic energy and U = 0, we need to set α = mc. When we do so, equation
(II.5.8) turns into

L = −mc2 +
1

2
m~v2 .

Mass-shell condition. Returning back to the action in generic parametrisation

S = −mc
∫ τ2

τ1

√
ẋµẋµ dτ , (II.5.9)

so that L is
L = −mc

√
ẋµẋµ .

As we argue below by comparison to the description in the static gauge, the canonical 4-momentum
pµ should be defined as the derivative of L with respect to −ẋµ. We get

pµ = − ∂L

∂ẋµ
= mc

ẋµ√
ẋν ẋν

.

Now when we take
p2 ≡ pµpµ = m2c2

ẋµẋ
µ

(√
ẋν ẋν

)2 = m2c2 .

Hence, the particle trajectories which minimize the action must satisfy the constraint p2−m2c2 = 0,
which is referred to as the mass-shell condition.

In the static gauge t = τ , we have x0 = ct and, therefore, the components of the 4-momentum are

pµ =


 mc√

1− ~v2

c2

,
m~v√
1− ~v2

c2


 . (II.5.10)

Here

p0 =
E

c
=

mc√
1− ~v2

c2

, (II.5.11)

where

E =
mc2√
1− ~v2

c2

(II.5.12)

is the energy of the relativistic particle and

~p =
m~v√
1− ~v2

c2

(II.5.13)

is its 3-momentum. The mass-shell condition takes the form

p0p
0 − ~p2 = m2c2 =⇒ E2

c2
− ~p2 = m2c2 .

Lagrangian and hamiltonian dynamics in the static gauge. Justification of the definitions
above comes from consideration of the action in the static gauge, which is

S = −mc2
∫
dt

√
1− ~v2

c2
. (II.5.14)
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This action involves the usual 3-velocity ~v = d~x
dt . Thus, according to the canonical formalism, we

have

~p =
∂L

∂~v
=

m~v√
1− ~v2

c2

. (II.5.15)

The Euler-Lagrange equations are

d

dt

(
m~v√
1− ~v2

c2

)
= 0 . (II.5.16)

Let us solve this equation. We have

d

dt

(
m~v√
1− ~v2

c2

)
=

m~̇v√
1− ~v2

c2

+
m~v(~v · ~̇v)/c2

(1− ~v2

c2 )3/2
= 0 . (II.5.17)

Multiplying this equation with ~v, we get

m(v · ~̇v)√
1− ~v2

c2

+
m~v2/c2(~v · ~̇v)

(1− ~v2

c2 )3/2
=

m(~v · ~̇v)

(1− ~v2

c2 )3/2
= 0 ,

from where we conclude that (~v · ~̇v) = 0. Substituting this result into (II.5.17), we get

m~̇v√
1− ~v2

c2

= 0 ,

which yields ~̇v = 0. Thus, a free relativistic particle moves with a constant velocity. The hamiltonian
is

H = ~p~v − L =
m~v2

√
1− ~v2

c2

+mc2
√

1− ~v2

c2
=

mc2√
1− ~v2

c2

. (II.5.18)

To write the Hamiltonian as the function of ~p, we take

~p2 =
m2~v2

1− ~v2

c2

−→ ~v2 =
~p2c2

~p2 +m2c2

and substituting this expression for ~v2 into the expression for H, we find

H = c
√
~p2 +m2c2 . (II.5.19)

This is the hamiltonian of the free relativistic particle.

5.4 Relativistic particle in electromagnetic field

Let us now define the vector potential, which is an underlying field (a Lorentz invariant 4-vector) in
electrodynamics that we will base our further derivations on. It reads

Aµ =
(
ϕ (x) , ~A (x)

)
.
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Notice that
Aµ → Aµ = ηµνA

ν =
(
ϕ (x) ,− ~A (x)

)
. (II.5.20)

The properties of a charged particle with respect to its interaction with electromagnetic field are
characterized by a single parameter: the electric charge e. The properties of the electromagnetic
field itself are determined by the vector Aµ, the electromagnetic potential introduced above. Using
these quantities, one can introduce the action of a charged particle in electromagnetic field as follows

S = −mc
∫ b

a

ds− e

c

∫
Aµdx

µ .

Using Hamilton’s principle, stating that a particle follows the path that extremises the action (δS =
0), we can derive the equations of motion in which we neglect the back reaction of the charge on the
electromagnetic field

0 = δS = −mc
∫

dxµdδx
µ

√
dxνdxν

− e

c

∫
[(δAµ)dxµ +Aµd(δxµ)] , (II.5.21)

where we used that ds =
√

dxνdxν . We can further take the length s itself as a parameter along the
trajectory and, therefore, define the so-called 4-velocity Uµ = dxµ

ds . The explicit form of Uµ is

Uµ =
dxµ

ds
=

dxµ

c
√

1− ~v2

c2 dt
=


 1√

1− ~v2

c2

,
~v

c
√

1− ~v2

c2


 . (II.5.22)

and it has an important property that

UµU
µ =

dxµ
ds

dxµ

ds
= 1 .

Using the fact that δAµ = Aµ(xν + δxν)−Aµ(xν) = ∂νAµδx
ν + · · · and differentiating by parts, we

can rewrite equation (II.5.21) as follows

δS = mc

∫
dUµδx

µ +
e

c

∫
(∂νAµdxνδxµ − ∂νAµδxνdxµ) = 0 .

This imposes the following condition for the extremum

mc
dUµ
ds

+
e

c
(∂νAµ − ∂µAν)Uν = 0 .

Introducing the tensor Fµν of the electromagnetic field

Fµν = ∂µAν − ∂νAµ = −Fνµ , (II.5.23)

we can write the equation of motion of the charge in the electromagnetic field as follows

mc
dUµ

ds
=
e

c
FµνUν . (II.5.24)

This expression can also be written in a more suggestive form if we define the momentum9 pµ =

mcUµ, so that one can express the acceleration term dUµ

ds = d2xµ

ds2 as

dpµ

ds
=

dpµ

dt

dt

ds
=
e

c
FµνUν , (II.5.25)

9This is consistent with the requirement p2 = m2c2 since U2 = 1.
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(
ϕ, ~A

)

Figure 5.5: In the presence of the vector potential Aµ =
(
ϕ, ~A

)
the action of a charged

particle contains an additional term describing an interaction with the vector potential.

where the right hand side of the equation is referred to as the Lorentz force, whereas the left hand
side is simply the rate of change of momentum with respect to the relativistic interval. This equation
is comparable with the Newtonian statement: force is the rate of change of momentum. Note that
this derivation has assumed that the electromagnetic field is given (fixed) and that we vary the
trajectory of the particle only (the endpoints remain fixed).

Electromagnetic tensor Fµν . Before we proceed with the discussion of the Lorentz force, let us
understand a relation between Fµν and electromagnetic fields ~E, ~H. First, we have

F0i = ∂0Ai − ∂iA0 =
∂Ai
∂x0
− ∂A0

∂xi
. (II.5.26)

Taking into account (II.5.20) and x0 = ct, we find that

F0i =

[
−~∇ϕ− 1

c

∂ ~A

∂t

]

i

= ( ~E)i ,

where ~E = (Ex, Ey, Ez) is the electric field. Second, we consider

Fij = ∂iAj − ∂jAi = −(∂iA
j − ∂jAi) .

Here we have to recall that ~H = ~∇× ~A or in components ( ~H)i = εimn∂m ~An, where ~Ai are components
of the 3-vector ~A. Multiplying this relation with εijk and summing over i, we get

( ~H)iεijk = εijkεimn∂m ~An = ∂j ~Ak − ∂k ~Aj ,
where we have used the summation formula

εijkεimn = δjmδkn − δjnδkm .
Thus, we obtain

Fij = ∂iAj − ∂jAi = −(∂iA
j − ∂jAi) = −εijk( ~H)k , ~H = (Hx, Hy, Hz) .

These formulae allow us to obtain an explicit formula for the tensor of the electromagnetic field, the
latter being 4× 4 matrix, in terms of components of electric and magnetic fields

Fµν =




0 Ex Ey Ez
−Ex 0 −Hz Hy

−Ey Hz 0 −Hx

−Ez −Hy Hx 0


 (II.5.27)

and, as a consequence,

Fµν = ηµσηνρFσρ =




0 −Ex −Ey −Ez
Ex 0 −Hz Hy

Ey Hz 0 −Hx

Ez −Hy Hx 0


 . (II.5.28)
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We have also established the following relations between electric and magnetic fields and the corre-
sponding components of the 4-potential

~E = −~∇ϕ− 1

c

∂ ~A

∂t
and ~H = ~∇× ~A . (II.5.29)

Lorentz force. Now we come back at the expression for the Lorentz force and write it in terms of
electric and magnetic fields. Rearranging (II.5.25), we get

dpi

dt
=

(e
c
F i0U0 +

e

c
F ijUj

) ds

dt
=

=


e
c
Ei

1√
1− ~v2

c2

− e

c
Fij

vj

c
√

1− ~v2

c2


 c

√
1− ~v2

c2
= eEi +

e

c
εijkv

jHk . (II.5.30)

Here we used the fact that F i0 = ~Ei, Fij = F ij and Uj = − vj

c
√

1− v2

c2

. We can thus rewrite the

equations of motion in the form
d~p

dt
= e ~E +

e

c
~v × ~H . (II.5.31)

This equation is of the fundamental nature and can be experimentally verified. It is an equation
of motion for a changed particle in electromagnetic field. In the non-relativistic limit ~p = m~v the
above equation turns into Newton’s equation

m
d~v

dt
= e ~E +

e

c
~v × ~H .

Concerning the equation for p0, we have

dp0

dt
=
e

c
F 0iUi

ds

dt
= −e

c
Ei


− vi

c
√

1− v2

c2


 c

√
1− ~v2

c2
=
e

c
( ~E · ~v) .

This result is not independent but follows from (II.5.31). Indeed, since

p0 =
mc√
1− ~v2

c2

, E = Ekin = cp0 , (II.5.32)

we find10

dEkin

dt
=

d

dt

mc2√
1− v2

c2

= ~v · d~p

dt
= e
(
~E · ~v

)
.

Further we note that the last formula represents the work of the electromagnetic field on the charge.
Hence, the magnetic field does not change the kinetic energy, but rather only affects the direction
of the particle trajectory!

Hamiltonian of particle in a static gauge. In a static gauge t = τ , where t is a time measured
by a non-moving (static) observer. In this gauge the action takes the form

S =

∫
Ldt =

∫
dt

[
−mc2

√
1− v2

c2
dt− e

c
A0dx0 − e

c
Aidx

i

]
,

10We have
d~p

dt
=

ṁ~v√
1− v2

c2

+
m~v(

1− v2

c2

)3/2 (~v ·~̇v)

c2
−→ ~v · d~p

dt
=

m(~v ·~̇v)(
1− v2

c2

)3/2 =
dEkin

dt
.
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i.e. the Lagrangian is

L = −mc2
√

1− v2

c2
+
e

c
~A · ~v − eϕ

The momentum in the presence of the electromagnetic field is

~P =
∂L

∂~v
=

m~v√
1− v2

c2

+
e

c
~A = ~p+

e

c
~A , (II.5.33)

where ~p is the momentum of the free particle, and the hamiltonian

H =
∂L

∂~v
~v − L =

mc2√
1− v2

c2︸ ︷︷ ︸
kinetic energy

+ eϕ︸︷︷︸
potential energy

.

Expressing from eq.(II.5.33) the velocity ~v in terms of the canonical momentum ~P , we find that

H =

√
m2c4 + c2

(
~P − e

c
~A
)2

+ eϕ . (II.5.34)

We stress that such an expression for the hamiltonian arises only due to our choice of the static
gauge. In the absence of electromagnetic field (II.5.34) reduces to (II.5.19).

Gauge invariance. All the physical properties of the electromagnetic field as well as the properties
of charge in the electromagnetic field are determined not by Aµ, but rather by Fµν . The underlying
reason for this is that electrodynamics exhibits an important new type of symmetry11. To understand
this issue, we may decide to change the vector potential in the following way

Aµ → Aµ − ∂µχ , (II.5.35)

which can be rewritten in a less abstract form of space and time components separately:

~A→ ~A+ ~∇χ and ϕ→ ϕ− 1

c

∂χ

∂t
. (II.5.36)

These transformations are referred to as the gauge transformations. Let us see what effect they have
on the tensor of the electromagnetic field:

δFµν = ∂µ (Aν + ∂νχ)− ∂ν (Aµ + ∂µχ)− Fµν
= ∂µ∂νχ− ∂ν∂µχ = 0 . (II.5.37)

Thus, the transformation (II.5.35) does not change the form of the electromagnetic field tensor. For
this reason electromagnetism is a gauge invariant theory!

The same conclusion on the gauge invariance can be achieved by inspecting the gauge invariance of
the electric and magnetic fields ~E and ~H as expressed in terms of the scalar and vector potential

~E = −~∇ϕ− 1

c

∂ ~A

∂t
and ~H = ~∇× ~A . (II.5.38)

One can easily see that in the first case an extra ϕ term cancels with an extra ~A term and in the
second case we have the gauge transformation contribution vanishing due to the fact that ~∇×~∇χ = 0.

11This symmetry extends to many other physical theories besides electrodynamics.
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Chapter 6

Maxwell equations

“The velocity of light is one of the most important of the fundamental
constants of Nature. Its measurement by Foucault and Fizeau gave
as the result a speed greater in air than in water, thus deciding in
favor of the undulatory and against the corpuscular theory. Again,
the comparison of the electrostatic and the electromagnetic units gives
as an experimental result a value remarkably close to the velocity of
light – a result which justified Maxwell in concluding that light is the
propagation of an electromagnetic disturbance. Finally, the principle
of relativity gives the velocity of light a still greater importance, since
one of its fundamental postulates is the constancy of this velocity under
all possible conditions."

Albert Abraham Michelson, Studies in Optics

“From a long view of the history of mankind the most significant event
of the nineteenth century will be judged as Maxwell’s discovery of the
laws of electrodynamics."

Richard Feynman

6.1 Fields produced by moving charges

Let us now consider the case where the moving particles produce the fields themselves. The new
action will be then

S = Sp + Sint + Sf ,

where we have added a new term Sf , which describes the action for electromagnetic field itself. The
action of electrodynamics is

S = −mc
∫
ds− e

c

∫
Aµdx

µ − 1

16πc

∫
FµνF

µν d4x .

We recall that it is written in the Gauss system of units, where µ0 = 4π and ε0 = 1
4π . Note that we

can rewrite the second term as

e

c

∫
Aµdx

µ =
1

c

∫
ρAµdx

µdV =
1

c

∫
ρAµ

dxµ

dt
dV dt
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=
1

c

∫
jµAµdV dt =

1

c2

∫
jµAµ d

4x , (II.6.1)

where in the second line we have introduced, the current jµ = ρdxµ

dt = (ρc, ρ~v). Including this, we
can now write the action of the moving test charge as

S = −mc
∫
ds− 1

c2

∫
jµAµ d

4x− 1

16πc

∫
FµνF

µνd4x .

Keeping sources constant and the path unchanged (i.e. δjµ = 0 and δs = 0), we can write the
deviation from the action as follows

δS = − 1

c2

∫
jµδAµ d

4x− 1

8πc

∫
FµνδFµνd

4x

= −1

c

[
1

c

∫
jµδAµ d

4x+
1

4π

∫
∂Fµν

∂xν
δAµd4x

]
, (II.6.2)

where in the last term in the first line, we have used that

δFµν = ∂µδAν − ∂νδAµ .

To find the extremum, we need to satisfy δS = 0, which due to eq.(II.6.2), is equivalent to the
second pair of Maxwell’s equations

∂Fµν

∂xν
= −4π

c
jµ .

Identifying the respective components of the electromagnetic tensor we can rewrite the second pair
of Maxwell’s equations in a more familiar form

~∇× ~H =
4π

c
~j +

1

c

∂ ~E

∂t
and ~∇ · ~E = 4πρ , (II.6.3)

where 4π
c
~j and 4πρ are the sources and 1

c
∂ ~E
∂t is the so-called displacement current. The first expression

is Ampére’s law (also known as the Biot-Savart law), whereas the second one is the Gauss law.
Finally, we notice that the covariant conservation of the current ∂jµ

∂xµ = 0 is equivalent to the
continuity equation

∂ρ

∂t
+ div~j = 0 .

Electromagnetic duality. Below we include here a short digression on the tensor of the electro-
magnetic field. It is easy to check that, using the definition of the tensor, the following is true:

dF = ∂σFµν + ∂µFνσ + ∂νFσµ

= ∂σ(∂µAν − ∂νAµ) + ∂µ(∂νAσ − ∂σAν) + ∂ν(∂σAµ − ∂µAσ) = 0 .

With a change of indices, this takes the form

εµνσρ
∂Fνσ
∂xρ

= 0 , (II.6.4)

which are four equations in disguise, since we are free to pick any value of the index µ. Let us
introduce the so-called dual electromagnetic tensor

F ∗µν =
1

2
εµνρσFρσ . (II.6.5)
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Then we can rewrite equation (II.6.4) as

∂F ∗µν

∂xν
= 0 . (II.6.6)

These equations are nothing else but the 1st pair of Maxwell’s equations.

Omitting the currents in the second pair, on can now see that the first and second pair of
Maxwell’s equations are similar. Indeed, we have

1st pair :
∂F ∗µν

∂xµ
= 0 ,

2nd pair :
∂Fµν

∂xµ
= 0 .

The main difference between them is that the first pair never involves any currents:

• first pair of Maxwell’s equations does not involve any density or current: ρ,~j;

• second pair of Maxwell’s equations does involve the density and current: ρ,~j.

This distinction has a deeper meaning. The magnetic field, as opposed to the electric field, is an
axial vector, i.e. one that does not change sign under reflection of all coordinate axes. Thus, if
there would be sources for the first pair of Maxwell equations, they should be an axial vector and
a pseudoscalar1. The classical description of particles does not allow to construct such quantities
from dynamical variables associated to particle.

6.2 Electromagnetic waves

Maxwell equations are partial differential equations on components of electric ~E and magnetic ~H
fields. In absence of sources these equations read as

~∇ · ~H = 0 ,
∂ ~H

∂t
= −c ~∇× ~E , (II.6.7)

~∇ · ~E = 0 ,
∂ ~E

∂t
= c ~∇× ~H . (II.6.8)

Equations depend on a parameter c which appears to coincide with the speed of light. Usually, one
refers to two equations in (II.6.7) as the first pair and to (II.6.8) as the second pair, respectively.
The first pair has ~H on the left hand side, while the second one has ~E.

Equations (II.6.7), (II.6.8) admit non-zero solutions meaning that electromagnetic fields can exist
without any charges or currents. Electromagnetic fields which exist in the absence of any sources
are called electromagnetic waves.

A progress with solving Maxwell’s equations is based on the introduction of the 4-vector electro-
magnetic potential Aµ, which combines a scalar ϕ and a vector ~A components

Aµ = (ϕ, ~A) , Aµ = ηµνA
ν = (ϕ,− ~A) . (II.6.9)

The relationship between electric and magnetic fields and the corresponding components of the
4-potential is

~E = −~∇ϕ− 1

c

∂ ~A

∂t
and ~H = rot ~A . (II.6.10)

1A physical quantity that behaves like a scalar, only it changes sign under parity inversion e.g. an improper
rotation.
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Such a parametrisation of ~E and ~H in terms of arbitrary 4-potential automatically satisfies the 1-st
pair of Maxwell equations.

Now we consider the equation

~∇ · ~E = ~∇(−~∇A0 − 1

c

∂ ~A

∂t
) = 0

also known as the Gauss law. This can be written as

~∇2A0 +
1

c

∂

∂t
(~∇ · ~A) = 0

This equation shows that the scalar potential A0 ≡ ϕ is not dynamical (occurs without its time
derivative). In fact A0 can be unambiguously found from this equation by inverting the 3-dimensional
Laplace operator ~∇2

A0 = −~∇−2 1

c

∂

∂t
(~∇ · ~A) =

∫
d~x′

∂(~∇· ~A)
∂t (~x′)

4πc|~x− ~x′| . (II.6.11)

Thus, A0 is not independent – we do not need to specify it at t = t0 (initial time slice). Thus, the
number of independent degrees of freedom cannot be more than three.

We therefore end up with the last equation we have to solve, namely,

∂ ~E

∂t
= c ~∇× ~H .

Substituting here the electromagnetic potential we will get

∂

∂t

(
~∇A0 +

1

c

∂ ~A

∂t

)
= −c ~∇× ~∇× ~A ,

which with the use of the known formula

~∇× (~∇× ~A) = ~∇(~∇ · ~A)− ~∇2 ~A

boils down to the following very complicated equation for ~A

1

c2
∂2 ~A

∂t2
− ~∇2 ~A = ~∇

(
~∇−2 ∂2

c2∂t2
− 1
)

(~∇ · ~A) . (II.6.12)

At this point it is unclear how to solve such an equation.

The progress how can be made by invoking the gauge freedom (II.5.36). According to (II.5.36),
two configurations of Aµ which differ from each other by a gauge transformation are, thus, physically
indistinguishable. We can use this freedom in the redefinition of the electromagnetic potential to
bring it by a gauge transformation to a convenient form and in this way to solve equation (II.6.12).

Coulomb gauge. Looking at (II.6.12), it is obvious that one has to use gauge transformations to
subject Aµ a condition

~∇ · ~A ≡ div ~A ≡ ∂iAi = 0 . (II.6.13)

Subjecting Aµ to an extra condition is called gauge fixing and the condition itself is known as the
gauge. The gauge (II.6.13) is known as the Coulomb (or radiation) gauge. For any given Ãi one
can always find a representative Ai in its gauge orbit which satisfies the Coulomb gauge condition.
Indeed,

Ai = Ãi + ∂iα , ∂iA
i = 0 .
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Gauge orbits

G1

G2

Constrained surface div ~E = 0

Figure 6.1: Constrained surface div ~E = 0 in the space of field configurations Aµ. This surface is
foliated by the action of the gauge group into a set of disjoint orbits. The red curves exemplify two
possible gauge fixings – the first one G1 is complete and the second G2 is not.

We have
∂iA

i = ∂iÃ
i − ~∇2α = 0 ,

that is

α = ~∇−2∂iÃ
i = −

∫
d~x′

~∇ · ~A(~x′)
4π|~x− ~x′| .

We see that in the Coulomb gauge equation (II.6.12) turns into the wave equation (d’Alembert’s
equation) for each component of ~A

1

c2
∂2 ~A

∂t2
− ~∇2 ~A = 0 . (II.6.14)

In fact from (II.6.11) it follows that in the Coulomb gauge A0 = 0 which together with the gauge
fixing condition ~∇· ~A = 0 means that electromagnetic potential (and therefore electromagnetic field)
has only two degrees of freedom, whose time evolution is described by (II.6.14). These two degrees
of freedom correspond to two possible polarisations of a photon. In this way we, in fact, solved
Maxwell’s equations.

We further point out that one of the convenient gauge choices involves setting ∂µAµ = 0, which
is the covariant gauge choice known as the Lorenz gauge2. This however is not a complete gauge
choice, because, as will be shown later, there are still the gauge transformations that leave the
electromagnetic field tensor unchanged. A further specification of the Lorenz gauge known as the
Coulomb gauge sets the divergence of the vector or the scalar potential equal to zero, i.e. div ~A = 0
and ϕ = 0.

2Often erroneously referred to as the Lorentz gauge, due to the similarity with the name Lorentz as in Lorentz
transformations, developed by Dutch physicist Hendrik Lorentz. However it was a Danish physicist, Ludvig Lorenz,
who actually introduced the Lorenz gauge.
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Solving the wave equation. Consider the wave equation

∆ ~A− 1

c2
∂2 ~A

∂t2
= 0 .

When we only consider the plane-wave solutions (i.e. the ones that depend on the coordinate x
only), then the equation reduces to

∂2f

∂x2
− 1

c2
∂2f

∂t2
= 0 .

It can be further written in the factorized form
(
∂

∂t
− c ∂

∂x

)(
∂

∂t
+ c

∂

∂x

)
f = 0 .

With a change of variables ξ = t− x
c and η = t+ x

c , one gets

∂

∂ξ
=

1

2

(
∂

∂t
− c ∂

∂x

)
,

∂

∂η
=

1

2

(
∂

∂t
+ c

∂

∂x

)
,

so that the wave equation in these coordinates takes the form

∂2f

∂ξ∂η
= 0 . (II.6.15)

The general solution of this equation reads as

f = f1 (ξ) + f2 (η) ,

where f1 and f2 are two arbitrary functions of their arguments. Changing our variables back to x
and t, we find that the general solution for f is given by

f = f1

(
t− x

c

)
+ f2

(
t+

x

c

)
.

Notice that this solution simply represents the sum of right- and left-moving plane waves of any
arbitrary profile, respectively.

Let us now consider plane wave solution to the d’Alambert equation. In this case the derivatives
of the y and z component of the vector potential with respect to y and z components respectively
should vanish as we will only look at oscillations in the x direction. For the Coulomb gauge condition
this implies that

div ~A = 0 =
∂Ax
∂x

+
∂Ay
∂y

+
∂Az
∂z
⇒ ∂Ax

∂x
= 0 .

If ∂Ax
∂x = 0 everywhere, then ∂2Ax

∂x2 = 0, which rendes the wave equation for the component Ax in
the form

∂2Ax
∂x2

− 1

c2
∂2Ax
∂t2

= 0

− 1

c2
∂2Ax
∂t2

= 0⇒ ∂2Ax
∂t2

= 0⇒ ∂Ax
∂t

= const.

Since we are not interested in a constant electric field Ex, we put Ax = 0. Since ~E = − 1
c
∂ ~A
∂t and

~H = rot ~A, then

~H = ~∇× ~A =

∣∣∣∣∣∣

~ex ~ey ~ez
∂x ∂y ∂z
0 Ay(t− x/c) Az(t− x/c)

∣∣∣∣∣∣
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direction of propagation

E
r

H
r

Figure 6.2: Oscillations of the electric and magnetic fields in electro-
magnetic wave.

= −~ey∂xAz(t− x/c) + ~ez∂xAy(t− x/c) = ~ey
1

c

∂Az
∂t

+ ~ez

(
−1

c

∂Ay
∂t

)

= ~ey(−Ez) + ~ezEy =

∣∣∣∣∣∣

~ex ~ey ~ez
1 0 0
0 Ey Ez

∣∣∣∣∣∣
= ~n× ~E ,

where ~n = (1, 0, 0) is the unit vector in the x-direction. Thus, the electric field ~E and the magnetic
field ~H are perpendicular to each other. Waves with this property are referred to as transversal
waves.

Energy flux and energy density. Electromagnetic waves are known to carry energy; we can
define the energy flux also known as the Poynting vector

~S =
c

4π
~E × ~H =

c

4π
~E × (~n× ~E) .

Since ~a× (~b×~c) = ~b
(
~a,~c
)
−~c
(
~a,~b
)
, where

(
~a,~b
)
denotes the scalar product between vectors ~a and ~b,

we find the following result
~S =

c

4π
~n~E2 ,

where due to orthogonality of ~n and ~E the contribution of the second term vanishes. The energy
density is given by

W =
1

8π

(
~E2 + ~H2

)
.

For electromagnetic waves
∣∣ ~E
∣∣ =

∣∣ ~H
∣∣, so that W = 1

4π
~E2. Hence, there exists a simple relationship

~S = cW~n .

We define the momentum associated to the electromagnetic wave to be

~p =
~S

c2
=
W

c
~n .

For a particle moving along ~n, we have p = W
c . Consider a particle moving with velocity ~v. We

then have p = vE
c2 which for v → c becomes p = E

c ; the dispersion relation for a relativistic particle
moving at the speed of light (photon).
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6.3 Maxwell’s equations with sources

Continuing, we are now interested in the case of fields created by moving charges. So far we have
discussed

• Motion of a charged particle in an external electromagnetic field (the Lorentz force);

• Time-dependent fields but without charges (electromagnetic waves).

We will now study time-dependent fields in the presence of arbitrary moving charges3. Consider the
second pair of Maxwell’s equations

∂Fµν

∂xν
= −4π

c
jµ ,

∂

∂xν
(∂µAν − ∂νAµ) =

∂2

∂xν∂xµ
Aν − ∂2

∂xν∂xν
Aµ = −4π

c
jµ .

Imposing the Lorenz condition

∂Aµ

∂xµ
= 0 ,

we obtain from the previous equation

�Aµ ≡ ∂2

∂xν∂xν
Aµ =

4π

c
jµ .

The last equation can be split into two

∆ ~A− 1

c2
∂2 ~A

∂t2
= −4π

c
~j ,

∆ϕ− 1

c2
∂2ϕ

∂t2
= −4πρ .

Here we deal with an equation of the type

∆Φ− 1

c2
∂2Φ

∂t2
= −4πf (~x, t) . (II.6.16)

To solve this problem, as in electrostatics, it is useful to first find the Green’s function G (~x, t; ~x′, t′),
defined as a solution of the following equation

(
∆x −

1

c2
∂2

∂t2

)
G (~x, t; ~x′, t′) = −4πδ (~x− ~x′) δ (t− t′) . (II.6.17)

Note that G (~x, t; ~x′, t′) is not unique and it has to be specified in a number of ways. Additionally, it
is referred to as the propagator (especially in the field of quantum electrodynamics). The solution
to equation (II.6.16) reads

Φ (~x, t) =

∫
G (~x, t; ~x′, t′) f (~x′, t′) d3x′dt .

To check that this is actually the solution, one can apply the operator ∆x− 1
c2

∂2

∂t2 and move it under
the integral - two delta functions will emerge by virtue of (II.6.17), which upon integration will turn
f (~x′, t′) into f (~x, t).

3The motion of charges has to be set up, i.e. even though the charges produce an electromagnetic field, their
motion will not be influenced by the presence of these fields. This excludes the back-reaction of fields on charges.
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To proceed with solving (II.6.16), we will need the Fourier transform4 of the function entering
equation (II.6.17)

δ (~x− ~x′) δ (t− t′) =
1

(2π)
4

∫ ∞

−∞
d~k

∫ ∞

−∞
dω ei

~k·(~x−~x′)e−iω(t−t′) ,

G (~x, t; ~x′, t′) =

∫ ∞

−∞
d~k

∫ ∞

−∞
dω g

(
~k, ω

)
ei
~k·(~x−~x′)−iω(t−t′) .

Plugging these into the equation, we obtain

g
(
~k, ω

)(
−~k2 +

ω2

c2

)
= −4π

1

(2π)4
= − 1

4π3
,

which amounts to

g
(
~k, ω

)
=

1

4π3

1

~k2 − ω2

c2

.

From this one can find an integral expression for G (~x, t; ~x′, t′)

G (~x, t; ~x′, t′) =
1

4π3

∫ ∞

−∞
d~k

∫ ∞

−∞
dω
ei
~k·(~x−~x′)−iω(t−t′)

~k2 − ω2

c2

.

The complex function inside the integral is singular at ~k2 = ω2

c2 and thus has two first order poles
at ω = ±c

∣∣~k
∣∣. We have to find the proper way to treat this singularity. This is done by using the

following physical reasoning. The Green function is a wave-type perturbation produced by a point
source sitting at x′ and emanating during an infinitesimal time at t = t′. We can expect that this
wave propagates with the speed of light as a spherical wave. Thus, we should require that

a) G = 0 in the whole space for t < t′

b) G is a diverging wave for t > t′

We shall see that the above only represents one of the possible Green’s functions, since a different
treatment of the poles produces different Green’s functions - an advanced or a retarded one:

Retarded Green function states Gret = 0 if t < t′

Advanced Green function states Gadv = 0 if t > t′

Notice that the difference of the two Gadv − Gret, called the Pauli function GPauli, satisfies the
homogenous equation.

Consider the retarded Green’s function. For t > t′, it should give a wave propagating from a
point-like source. Let us define τ = t− t′, ~R = ~x− ~x′ and R =

∣∣~R
∣∣. Then we have

e−iω(t−t′) ∼ e=ωτ ,

since τ > 0. Thus we need to require that =ω < 0 in order to have a decaying function at large ω,
hence we have to integrate over the lower complex plane. In opposite, for t < t′, the contour over
which we integrate in the upper half of the complex plane should give zero contribution due to the
aforementioned physical reasons. As a result, one could infinitesimally shift the poles into the lower

4The role of the Fourier transform is to convert a linear differential equation for the function into an algebraic one
for its Fourier image.
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half plane when performing the analytic continuation. According to this prescription, the Green’s
function is specified as follows

Gret(~x, t; ~x
′, t′) =

1

4π3

∫
d~k

∫
dω

ei
~kR−iωτ

k2 − 1
c2 (ω + iε)2

.

We can conveniently rewrite the previous statement, by making use of partial fractions

Gret (~x, t; ~x′, t′) = (II.6.18)

= − 1

4π3

∫ ∞

−∞
d~k

∫ ∞

−∞
dω ei

~kR c

2k

[
1

ω − ck + iε
− 1

ω + ck + iε

]
e−iωτ .

Applying Cauchy’s theorem5 and taking the limit ε→ 0, we find

Gret (~x, t; ~x′, t′) =
1

4π3

∫ ∞

−∞
d~k ei

~k·~R 2πi
c

2k

[
e−ickτ − eickτ

]
(II.6.19)

=
c

2π2

∫ ∞

−∞
d~k

ei
~k·~R

k
sin(ckτ) .

To compute this integral, we pass to spherical coordinates.

Gret (~x, t; ~x′, t′) =
c

2π2

∫ ∞

0

dk k sin(ckτ)

∫ π

0

sin θdθ

∫ 2π

0

dϕ eikR cos θ

=
c

π

∫ ∞

0

dk k sin(ckτ)

∫ 1

−1

dx eikRx

=
2c

πR

∫ ∞

0

dk sin(kR) sin(ckτ) (II.6.20)

=
1

πR

∫ ∞

−∞
d (ck) sin

(
(ck)R

c

)
sin ((ck) τ) (II.6.21)

= − 1

4πR

∫ ∞

−∞
dx
(
eix

R
c − e−ixRc

) (
eixτ − e−ixτ

)
(II.6.22)

=
1

2πR

∫ ∞

−∞
dx
(
eix(τ−

R
c ) − eix(τ+R

c )
)

=
1

R
δ

(
τ − R

c

)
− 1

R
δ

(
τ +

R

c

)
(II.6.23)

=
1

R
δ

(
τ − R

c

)
(II.6.24)

To summarise, in this computation we have used: partial fractions (II.6.18), the Cauchy theorem in
(II.6.18-II.6.19), switched to spherical coordinates and integrated over the angles (II.6.20), substi-
tuted ck = x (II.6.21), expanded the trigonometric functions in terms of their complex exponentials
(II.6.22), and identified Fourier transforms of delta functions (II.6.23). On the last step we have
rejected δ

(
τ + R

c

)
, because for τ,R, c > 0, the result will always be zero. Substituting back our

original variables, we get

Gret (~x, t; ~x′, t′) =

δ

(
t′ +
|~x−~x′|
c − t

)

|~x− ~x′| .

5Cauchy integral formula reads

f(a) =
1

2πi

∮
C

f(z)

z − a dz ,

where a function f(z) is holomorphic inside the region surrounded by a contour C and integration is performed in
counter-clockwize direction.
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The result can be understood as the signal propagating at the speed of light, which was emitted

at t′ and will travel for |~x−~x
′|

c and will be observed at time t. Thus, this Green function reflects a
natural causal sequence of events. The time t is then expressed in terms of the retarded time t′

t = t′ +
|~x− ~x′|

c
.

Substituting this solution and integrating over t′, we obtain the retarded potentials

ϕ (~x, t) =

∫ δ

(
t′ +
|~x−~x′|
c − t

)

|~x− ~x′| ρ (~x′, t′) d~x′dt′ + ϕ0

=

∫ ρ

(
~x′, t− |~x−~x

′|
c

)

|~x− ~x′| d~x′ + ϕ0 , (II.6.25)

~A (~x, t) =
1

c

∫ δ

(
t′ +
|~x−~x′|
c − t

)

|~x− ~x′|
~j (~x′, t′) d~x′dt′ + ~A0

=
1

c

∫ ~j

(
~x′, t− |~x−~x

′|
c

)

|~x− ~x′| d~x′ + ~A0 , (II.6.26)

where ϕ0 and ~A0 are the solutions of the homogeneous d’Alambert equations (those corresponding
to the free electromagnetic field) �Aµ0 = 0 and the Lorentz gauge condition ∂µA

µ
0 = 0.

Note that for ϕ in the case of time-independent ρ and ~j we have

ϕ =

∫
ρ(~x′)
|~x− ~x′|d~x

′ .

This is just the electrostatic formula for the scalar potential. Moreover, if the current ~j is time-
independent, we obtain

~A(~x) =
1

c

∫ ~j(~x′)
|~x− ~x′|d~x

′ .

Lorentz invariance of Green’s function. Let us now show that Gret is Lorentz invariant. We
write

Gret (~x, t; ~x′, t′) = Θ (t− t′)
δ

(
t′ +
|~x−~x′|
c − t

)

|~x− ~x′| .

Here the extra term Θ (t− t′) ensures that Gret (~x, t; ~x′, t′) = 0 for t < t′, because

Θ (t− t′) =

{
0, t < t′

1, t ≥ t′

To rewrite the retarded Green’s function in a Lorentz-invariant way, we have to use

δ (f (x)) =
∑

i

δ (x− xi)
|f ′ (xi)|

.
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Figure 6.3: At every point in time every observer has his past light cone, which is a set
of all events that could have influenced his presence, and a future light cone, the set of
events which the observer can influence. The boundaries of the light cones also define the
split between different kinds of space-time intervals. On the light cone itself the intervals
are all light-like, time-like on the inside and space-like on the outside.

In the last formula the derivative is evaluated at the set of points xi, such that f (xi) = 0. Hence,
introduce u = |~x− ~x′| − c (t− t′). Then

δ
(
|~x− ~x′|2 − c2 (t− t′)2

)
= δ
(
u(u+ 2c(t− t′))

)
= δ
(
u2 + 2uc(t− t′))

)
.

Now define f(u) = u2 +2uc(t− t′) with f ′(u) = 2u+2c(t− t′). Equation f(u) = 0 has two solutions:
u = 0 and u = −2c(t−t′). The second one will not contribute into the formula describing the change
of variables in the delta-function because of Θ(t− t′). Thus,

δ
(
|~x− ~x′|2 − c2 (t− t′)2

)
=
δ (|~x− ~x′| − c (t− t′))
(2u+ 2c(t− t′))|u=0

=
δ (|~x− ~x′| − c (t− t′))

2|~x− ~x′| .

In this way, we arrive at the following formula

Gret (~x, t; ~x′, t′) = 2cΘ (t− t′) δ (|~x− ~x′| − c (t− t′))
2 |~x− ~x′|

= 2cΘ (t− t′) δ
(
|~x− ~x′|2 − c2 (t− t′)2

)
= 2cΘ (t− t′) δ(s2) ,

where the argument of the delta function is the square of the 4-interval s between two events (~x, t) and
(~x′, t′), which is a Lorentz invariant object. From this we can conclude that the Green’s function is
invariant under proper orthochronous Lorentz transformations. Note that for orthochronous Lorentz
transformations the Θ(t−t′)-function is not invariant only for space-like intervals, but these intervals
are discarded by the presence of the δ-function δ(s2).

Green’s function and causality principle. Let us recall a classification of 4-intervals

ds2 = c2dt2 − dx2
i (II.6.27)

We refer to them differently depending on the sign of ds2:
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1) time-like intervals if ds2 > 0,

2) space-like intervals if ds2 < 0,

3) light-like intervals (also called null intervals) if ds2 = 0.

Consider Fig. 6.3 representing the light-cone built over a point X. Signals in X can come only from
points X ′, which are in the past light-cone of X. We say X > X ′ (X is later than X ′). The influence
of a current j in X ′ on potential A at X is a signal from X ′ to X. Thus, the causality principle is
reflected in the fact that A(X) can depend on 4-currents j(X ′) only for those X ′ for which X > X ′.
Thus,

δA(X)

δj(X ′)
∼ G(X −X ′) = 0 (II.6.28)

for X < X ′ or points X ′ that are space-like to X. Hence, the causality principle for the Green
function is

G(X ′ −X) = 0 , (II.6.29)

in terms of the conditions described above. The retarded Green’s function is the only relativistic
Green’s function which has this property.
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Chapter 7

Radiation

The last part of these lectures will treat two classical radiation problems: Liénard-Wiechert poten-
tials and the dipole radiation.

7.1 Fields of a uniformly moving charge

Before studying the radiation problems, we consider the field produced by an electric charge which
moves uniformly with velocity ~v. To this end we need fist to understand how electromagnetic fields
transform under Lorentz transformations.

7.1.1 Lorentz transformations of electromagnetic field

First we consider the 4-potential Aµ. Under Lorentz transformations of space-time coordinates, Aµ
transforms as a vector:

A′µ(x′) = ΛµνA
ν(x) .

Recall that the matrix Λ of a Lorentz transformation from a stationary to a moving with velocity ~v
frame is of the form

Λ =

(
a −ac vt
−ac v Λij

)
, (II.7.1)

where Λij = δij + a−1
v2 vivj and a = 1√

1− v2

c2

. Thus, the scalar and vector potentials in the moving

frame are

ϕ′ = aϕ− a

c
(v ·A) =

ϕ− (A·v)
c2√

1− v2

c2

,

~A′ = −a
c
ϕv + ~A+ d~v(~v · ~A) = ~A− ϕ~vc√

1− v2

c2

+


 1√

1− v2

c2

− 1


 ~v(~v · ~A)

~v2
,

where we adopted a concise notation d = a−1
v2 . Now we come to the electromagnetic field ( ~E, ~H).

It is important to realize that components of the electromagnetic field transform as components of
the second rank tensor! Namely, one has

Fµν
′
(x′) = ΛµρΛντF

ρτ (x) .
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For Ei one therefore gets

E′i = F i0
′

= ΛiµΛ0
νF

µν = Λi0Λ0
kF

0k + ΛikΛ0
0F

k0 + ΛikΛ0
jF

kj

= (ΛikΛ0
0 − Λi0Λ0

k)Ek + ΛikΛ0
j (−εkjmHm)

= a(δik + dvivk)Ek −
a2

c2
vivkEk − (δik + dvivk)

a

c
vj(−εkjmHm)

= aEi +
(
ad− a2

c2

)
vi(~v · ~E) +

a

c
εijmvjHm .

The final formula reads as

E′i = aEi −
a− 1

v2
vi(~v · ~E) +

a

c
(~v × ~H)i .

Now we come to the magnetic field. We have

H ′i = −1

2
εijkF

′jk = −1

2
εijk(Λj0ΛknF

0n + ΛjnΛk0F
n0 + ΛjmΛknF

mn)

= −1

2
εijk(Λj0Λkn − ΛjnΛk0)F 0n − 1

2
εijkΛjmΛknF

mn .

We proceed by substituting the matrix elements of Λ:

H ′i =
1

2
εijk
(
− a

c
vj(δnk + dvnvk) +

a

c
vk(δnj + dvnvj)

)
En

− 1

2
εijk
(

(δmj + dvmvj)(δnk + vnvk)
)
Fmn .

Making use of the formula for the pairing of two ε-tensors in the second line of the last formula, we
arrive at

H ′i = −a
c
εijnvjEn +Hi −

d

2

(
(δinδks − δisδnk)vkvnHs + (δimδjs − δisδjm)vjvmHs

)
= Hi −

a

c
εijnvjEn + d(Hiv

2 − vi(~v · ~H)) (II.7.2)

The final expression is

H ′i = aHi −
a− 1

v2
vi(~v · ~H)− a

c
(~v × ~E)i .

We summarize the transformation formulae

ϕ′ = aϕ− a

c
(~v · ~A) ,

~A′ = ~A− a

c
ϕ~v +

a− 1

v2
~v(~v · ~A)

(II.7.3)

and
~E′ = a ~E − a− 1

v2
~v(~v · ~E) +

a

c
(~v × ~H) ,

~H ′ = a ~H − a− 1

v2
~v(~v · ~H)− a

c
(~v × ~E) .

(II.7.4)

The inverse transformations are

ϕ = aϕ′ +
a

c
(~v · ~A′) ,

~A = ~A′ +
a

c
ϕ′ ~v +

a− 1

v2
~v(~v · ~A′)

(II.7.5)
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and
~E = a ~E′ − a− 1

v2
~v(~v · ~E′)− a

c
(~v × ~H ′) ,

~H = a ~H ′ − a− 1

v2
~v(~v · ~H ′) +

a

c
(~v × ~E′) .

(II.7.6)

This completes our discussion of the transformation properties of the 4-potential and the electro-
magnetic field under Lorentz transformations.

From the electric and magnetic fields one can make invariants, i.e. objects that remain unchanged
under Lorentz transformations. In terms of the tensor of the electromagnetic field two such invariants
are

FµνF
µν = inv ; (II.7.7)

εµνρσFµνFρσ = inv . (II.7.8)

7.1.2 Uniformly moving charge – no radiation

The Lorentz transformation of ~x is

~x′ = ~x− a~vt+
a− 1

v2
~v(~v · ~x) .

In what follows we need to know x′2. We compute

x′2 = x2 + a2v2t2 +
(a− 1)2

v2
(~v~x)2 − 2a(~v~x)t+ 2

a− 1

v2
(~v~x)2 − 2a(a− 1)(~v~x)t

= x2 + a2v2t2 +
(~v~x)2

v2

(
(a− 1)2 + 2(a− 1) + 1︸ ︷︷ ︸−1

)
− 2a2(~v~x)t

= x2 + a2v2t2 +
a2 − 1

v2
(~v~x)2 − 2a2(~v~x)t = x2 + a2v2t2 +

a2

c2
(~v~x)2 − 2a2(~v~x)t ,

since a2−1
v2 = a2

c2 . Then, we proceed as follows

x′2 = x2 − 2(~v~x)t+ v2t2︸ ︷︷ ︸+(a2 − 1)(v2t2 − 2(~v~x)t+ x2 − x2) +
a2

c2
(~v~x)2

= (~x− ~vt)2 + a2
v2

c2
(~x− ~vt)2 − a2

c2
(v2x2 − (~v~x)2)

= (~x− ~vt)2
(

1 + a2
v2

c2

)
︸ ︷︷ ︸

a2

−a
2

c2
(v2x2 − (~v~x)2)

Thus,

x′2 = a2(~x− ~vt)2 − a2

c2
(v2x2 − (~v~x)2) = a2(~x− ~vt)2 − a2

c2
(~v × ~x)2 .

We further note that in the vector product ~v × ~x one can replace ~x for ~x− ~vt without changing the
result. The final answer we need reads as

x′2 = a2(~x− ~vt)2 − a2

c2
(v2x2 − (~v~x)2) = a2

(
(~x− ~vt)2 − 1

c2
(~v × ~x− ~vt)2

)
.

Since in the moving frame ~H ′ = 0, the electric and magnetic fields in the stationary frame are

~E = a~E′ − a− 1

v2
~v(~v · ~E′)− a

c
(~v × ~H ′) = a ~E′ − a− 1

v2
~v(~v · ~E′) ,

~H = a ~H ′ − a− 1

v2
~v(~v · ~H ′) +

a

c
(~v × ~E′) =

a

c
(~v × ~E′) ,

(II.7.9)
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The electric field is ~E′ = e ~x
′

x′3 . Thus, we compute

~E =
e

x′3

(
a~x− a2~vt+

a(a− 1)

v2
~v(~v~x)− a− 1

v2
~v
(

(~v~x)− av2t+ (a− 1)(~v~x)
))

=
ae

x′3
(~x− ~vt) ,

which upon substituting x′ results into a very simple formula

~E(~x, t) =
e(~x− ~vt)

a2
(

(~x− ~vt)2 − 1
c2 (~v × ~x− ~vt)2

)3/2
.

We recall that in the last formula (~x, t) is a (observation) point in a stationary frame where the field
~E(~x, t) is measured and ~R = ~x − ~vt is vector from the charge to the observation point. Note that
~E is collinear to ~R. Introducing an angle θ between velocity ~v (the direction of motion) and ~R, the
last formula can be written as

~E(~x, t) =
e~R

R3

(
1− v2

c2

)

(
1− v2

c2 sin2 θ
)3/2

.

As to the magnetic field, one gets

~H =
a

c
~v × e

x′3

(
~x− a~vt+

a− 1

v2
~v(~v~x)

)
=

1

c

[
~v,
ae

x′3
~x
]
.

Obviously, the last expression can be written as

~H(~x, t) =
1

c
~v × ~E .

The corresponding energy flux is

~S(~x, t) =
c

4π
~E × ~H =

1

4π
~E × ( ~E × ~v) =

1

4π
(~vE2 − ~E( ~E · ~v)) .

A charge moving with a uniform velocity is not radiating energy. It is not radiating energy in the
rest frame, and, therefore, the same must hold in any other inertial frame.

7.2 Fields of an arbitrary moving charge

The charge distribution in space and time of a single point-like charge is given by

ρ (~x, t) = eδ (~x− ~r (t)) ,

~j (~x, t) = e~vδ (~x− ~r (t)) .

Here ~x is the position of the observer, ~r (t) is the trajectory of the charge and ~v = ṙ (t), its velocity.
The potential then reads

ϕ (~x, t) =

∫ δ

(
t′ +
|~x−~x′|
c − t

)

|~x− ~x′| eδ (~x′ − ~r (t′)) d~x′dt′ (II.7.10)

Let us take ~x′ = ~r (t′), because only then the integrand is non-zero. Then eq.(II.7.10) can be
integrated over ~x′ and we get

ϕ (~x, t) = e

∫ δ

(
t′ +
|~x−~r(t′)|

c − t
)

|~x− ~r (t′)| dt′ . (II.7.11)
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Take f (t′) = t′ +
|~x−~r(t′)|

c − t and use δ (f (x)) = δ(x)
|f ′(x)| , where f

′ (x) is evaluated at the point were

f (x) = 0, i.e. at t′ which solves t′ + |~x−~r(t
′)|

c − t = 0

df (t′)
dt′

= 1− 1

c

(~x− ~r(t′)) · ~̇r(t′)
|~x− ~r (t′)| = 1− 1

c

~R · ~v
R

.

In the last equation we have used the fact that ~R = ~x − ~r (t′) and ~v = ~̇r (t). The potential then
becomes

ϕ (~x, t) =
e

R

1

1− 1
c

~R·~v
R

=
e

R− ~R·~v
c

. (II.7.12)

We can use the same line of reasoning to show

~A (~x, t) =
e

c

~v

(R− ~R·~v
c )

. (II.7.13)

The formulae (II.7.12) and (II.7.13) are the Liénard-Wiechert potentials. Let us compute the corre-
sponding electric and magnetic fields.

We have

~E = − 1

c

∂ ~A

∂t
− ~∇ϕ ;

~H = rot ~A .

Moreover, R(t′) is given by the difference in the times t and t′ with an overall factor of c

R
(
t
′)

= c
(
t− t′

)
.

Therefore,
∂R
(
t′
)

∂t
=
∂R
(
t′
)

∂t′
∂t′

∂t
= −

~R · ~v
R

∂t′

∂t
= c

(
1− ∂t′

∂t

)
. (II.7.14)

From this relation, it follows that
∂t′

∂t
=

1

1− ~R·~v
Rc

.

Analogously, one can also start from the expressions R(t′) = c(t− t′) and t′ = t′(t, ~x), such that

~∇R
(
t
′)

= −c~∇t′ ⇒ ~∇t′ = − 1

c
~∇R

(
t
′)

= − 1

c
~∇x
∣∣~x− ~r (t′ (~x, t))∣∣

= − 1

c

(
~R

R
+
∂R

∂t′
~∇t′
)
,

where one can again identify ∂R
∂t′ with the previous result from (II.7.14) and finally obtain

~∇t′ = −
~R

c
(
R− ~R·~v

c

) and ~∇R =
~R

R− ~R·~v
c

.

Now we have all the necessary ingredients, which we can use to find ~E and ~H, i.e. to obtain the Liénard-Wiechert fields.

First let’s calculate the quantity ∇ϕ,

∇ϕ =
−e

(R− ~R·~v
c )2

∇(R−
~R · ~v
c

).

The first term is
∇R = −c∇t′

and we can rewrite the second term by using of the vector identities

∇(~R · ~v) = (~R · ∇)~v + (~v · ∇)~R + ~R× (∇× ~v) + ~v × (∇× ~R).
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Now we have to calculate these quantities one at a time. A difficult quantity is

(~v · ∇)~R = (~v · ∇)~x− (~v · ∇)~r(t
′
).

Switching to index notation hugely simplifies this

vm∂mRi = vm∂mxi − vm∂mri
= vmδmi − vmvi∂mt′

= vi − vivm∂mt′vi.

Here I have used that ∂mri =
dri
dxm

=
dri
dt′

dt′
dxm

= vi∂mt
′. Going back to vector notation

(~v · ∇)~R = ~v − (~v · ∇t′)~v.

Similarly
(~R · ∇)~v = (~R · ∇t′)~̇v.

Now we calculate

(∇× ~v)i = εijk∂jvk

= εijk∂jt
′
v̇k

= ((∇t′)× ~̇v)i,

and similarly
∇× ~R = ∇× ~x−∇× ~r = −(∇t′)× ~v.

Now use an identity ~A× ( ~B × ~C) = ~B( ~A · ~C)− ~C( ~A · ~B), and we finally get

∇(~R · ~v) = ~v +∇t′(~R · ~̇v − v2
).

Substituting all the quantities finally gives

∇ϕ =
e

c2(R− ~R·~v
c )3

(
−~R(c

2 − v2
+ ~R · ~̇v) + c~v(R−

~R · ~v
c

)

)
.

A similar (but a little bit easier) exercise for d ~A
dt gives

d ~A

dt
=

e

c(R− ~R·~v
c )3

(
(R−

~R · ~v
c

)(~̇vR− c~v) +
~vR

c
(c

2 − v2
+ ~R · ~̇v)

)
.

Putting these together we obtain

~E =
e

(R− ~R·~v
c )3

(
(~R− ~vR

c
)(1− v2

c2
) +

1

c2
(~R(~R · ~̇v)− R2

~̇v)

− R
c3

(~v(~R · ~̇v)− ~̇v(~R · ~v))
)
.

By using R2 = ~R · ~R and again the relation ~A× ( ~B × ~C) = ~B( ~A · ~C)− ~C( ~A · ~B) we now find

~E =
e

(R− ~R·~v
c )3

(
(~R− ~vR

c
)(1− v2

c2
) +

1

c2
(~R× ((~R− R~v

c
)× ~̇v))

)
.

For the magnetic field we use
~H = ∇× ~A =

1

c
∇× (ϕ~v) =

1

c
(ϕ(∇× ~v) + (∇ϕ)× ~v) .

Substituting the quantities gives

~H =
~R

R
× e

(R− ~R·~v
c )3

(
(−~vR

c
)(1− v2

c2
) +

1

c2
(−R2

~̇v)

− R
c3

(~v(~R · ~̇v)− ~̇v(~R · ~v))
)
.

We see that we almost have the electric field (from the equation just above the final result for ~E), but we are missing the
quantities ~R(1 − v2

c2
) and 1

c2
~R(~R · ~̇v). However, the cross product with these quantities will vanish, since ~R × ~R = 0, and

therefore we can simply add these quantities. We finally have

~H =
~R

R
× ~E.
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To summarize, the Liénard-Wiechert fields are given by the following expressions

~H =
1

R
~R× ~E ,

~E = e

(
1− v2

c2

)(
~R− ~v

cR
)

(
R− ~R·~v

c

)3 +
e~R× ((~R− ~v

cR)× ~̇v)

c2
(
R− ~R·~v

c

)3 .

Notice that in the last equation the first term only depends on the velocity of the moving particle
and is proportional to 1

R2 (short distance), whereas the second term depends on acceleration and
is proportional to 1

R providing, therefore, the long-distance dominating contribution, the so-called
wave-zone. Note also that flux is proportional to ~E2 hence is also proportional to 1

R2 . Therefore,
∫

~E2dV ∼
∫

1

R2
R2dΩ = 4π ,

which is a constant flux of ~E at large distances. It is worth stressing that there is no energy
(radiation) coming from a charge moving at a constant velocity, because we can always choose a
frame where it is stationary, hence ~H = 0⇒ ~E · ~H = 0, consequently it cannot emit energy.

7.3 Dipole radiation

Field of a neutral system is expressed with the help of the so-called electric moment given in its
discretized form as

~d =

N∑

i=1

ei ~Ri , (II.7.15)

where ei is the magnitude of a charge at some distance Ri taken from an arbitrary point, in this
case chosen to be the origin. For a neutral system we require that

N∑

i=1

ei = 0 .

Note that for such a system, electric moment does not depend on the choice of the origin of the
reference frame, i.e. shifting all ~Ri → ~Ri − ~a gives

~d~a =

N∑

i=1

ei

(
~Ri − ~a

)
=

N∑

i=1

ei ~Ri − ~a
N∑

i=1

ei =

N∑

i=1

ei ~Ri = ~d .

Let us now consider a neutral system of moving charges. From diagram 7.1 using Pythagorean
theorem and assuming that ~l� R0, l being the characteristic size, we get1

R =

√(
~R0 − ~R′

)2

=

√
~R2

0 − 2~R0 · ~R′ + ~R′2 ≈

≈

√√√√~R2
0

(
1− 2

~R0 · ~R′
~R2

0

)
≈ R0

(
1−

~R0 · ~R′
~R2

0

)
= R0 −

~R0 · ~R′
R0

.

1Here ~R′ ≡ (x′, y′, z′).
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Figure 7.1: A diagrammatic representation of a dipole

By using (II.6.25), we then find the retarded scalar potential

ϕ =

∫
ρ
(
x′, t− R

c

)

R
d3x′ =

=

∫
d3x′

ρ
(
x′, t− R0

c

)

R0
−
~R0 · ~R′
R0

∂

∂R0

ρ
(
x′, t− R0

c

)

R0
+ · · · =

= −
~R0

R0
· ∂

∂R0

1

R0

∫
d3x′ ~R′ρ

(
x′, t− R0

c

)
,

where the first term vanishes because it is proportional the complete charge of the system, which
we have set to zero, by defining the system to be neutral. In the remaining term we will write the
integral as ~d

(
t− R0

c

)
, the electric moment at time t − R0

c , which is just a continuous version of
(II.7.15)

~d

(
t− R0

c

)
=

∫
d3x′ ~R′ρ

(
x′, t− R0

c

)
. (II.7.16)

Therefore2,

ϕ = −
~R

R
· ∂
∂R

~d
(
t− R

c

)

R
.

Further, we find

div
~d
(
t− R

c

)

R
= ~d · ~∇ 1

R
+

1

R
div ~d = −

~d · ~R
R3

+
1

R
div ~d ,

2To simplify our further treatment, the have changed the notation R0 → R.
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div ~d =
∂di
∂xi

=
∂di
∂R

∂R

∂xi
=

(
~R

R
· ∂

~d

∂R

)
,

so that

div
~d
(
t− R

c

)

R
= −

~d · ~R
R3

+
~R

R2

∂ ~d

∂R
.

On the other hand,

ϕ =
~d · ~R
R3
−

~R

R2

∂ ~d

∂R
.

Thus,

ϕ = −div
~d
(
t− R

c

)

R
.

Here divergence is taken over coordinates of the point P (x, y, z) where the observer is located. Using
expression (II.6.26), the vector potential becomes

~A =
1

c

∫ ~j
(
x′, t− R

c

)

R
d3x′ =

=
1

c

∫
d3x′

[~j
(
x′, t− R0

c

)

R0
−
~R0 · ~R′
~R0

∂

∂R0

~j
(
x′, t− R0

c

)

R0
+ · · ·

]
.

First integral can also be expressed via electric moment, which can be achieved by using the conti-
nuity equation

∂

∂t
ρ

(
x′, t− R0

c

)
= −div′ ~j

(
x′, t− R0

c

)
.

Multiplying both sides of this equation by time independent ~R′, integrating over entire space and
using the definition (II.7.16), we can then state that

∂

∂t
~p

(
t− R0

c

)
= −

∫
d3x′ ~R′div′ ~j

(
x′, t− R0

c

)
.

To proceed, let us sidetrack and consider an arbitrary unit vector ~a, i.e. |~a| = 1. Then

(
~a~R′

)
div~j = div

(
~j
(
~a~R′

))
−~j · ~∇′

(
~a~R′

)

= div
(
~j
(
~a~R′

))
−~j · ~a ,

where the last step follows from ~a being a constant and ∇′ ~R′ = 1. Based on that we can write

~a · ∂
∂t
~d

(
t− R0

c

)
= −

∫
d3x′div′

(
~j
(
~a~R′

))
+ ~a ·

∫
d3x′~j

(
x′, t− R0

c

)
.

Since currents do not leave the volume V , we find that
∫

d3x′div′
[
~j
(
~a~R′

)]
=

∮
(aR′) jndS = 0

as the normal component jn of the current vanishes (all currents never leave the integration volume
V ). This gives

~a · ∂
∂t
~d

(
t− R0

c

)
= ~a ·

∫
d3x′~j

(
x′, t− R0

c

)
.
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Since the last relation is valid for any unit vector ~a, we obtain that

∂

∂t
~d

(
t− R0

c

)
=

∫
d3x′~j

(
x′, t− R0

c

)
.

Therefore, we arrive at3

~A =
1

cR
· ∂
∂t
~d

(
t− R

c

)
.

We see that both the scalar and the vector potential of any arbitrary neutral system on large
distances are defined via the electric moment of this system.

The simplest system of this type is a dipole, i.e. two opposite electric charges separated by a
certain distance from each other. A dipole whose moment ~d changes in time is called an oscillator
(or a vibrator).

Radiation of an oscillator plays an important role in the electromagnetic theory (radiotelegraphic
antennae, radiating bodies, proton-electron systems, etc.). To advance our investigation of a dipole,
let us introduce the Hertz vector

~P (t, R) =
~d
(
t− R

c

)

R
. (II.7.17)

It is interesting to see that

∆~P (t, R) = ~∇2 ~P (t, R) =
1

c2
∂2 ~P

∂t2
.

This can be derived as follows. First, we notice that

∂

∂x
~P = − 1

R2

∂R

∂x
~d− 1

cR

∂~d

∂t

∂R

∂x
= − x

R3
~d− x

cR2

∂ ~d

∂t
,

since ∂R
∂x = x

R . Differentiating once again, we get

∂2

∂x2
~P = − 1

R3
~d+ 3

x2

R5
~d+

3

c

x2

R4

∂ ~d

∂t
− 1

cR2

∂ ~d

∂t
+

1

c2
x2

R3

∂2 ~d

∂t2
,

so that

3∑

i=1

∂2

∂x2
i

~P =
1

c2R

∂2 ~d

∂t2
,

which represents the spherically symmetric solution of the wave equation.

Consider the retarded potentials

ϕ(~R, t) = −div ~P (t, R) , ~A(~R, t) =
1

c

∂ ~P (t, R)

∂t
;

The potentials are spherically symmetric, i.e. they depend on the distance R only. For the electro-
magnetic fields we have

~H = rot ~A (t) =
1

c

∂

∂t
rot~P (t, R) ;

~E = −1

c

∂ ~A (t)

∂t
− ~∇ϕ = − 1

c2
∂2 ~P (t, R)

∂t2
− ~∇div ~P (t, R)

3Here we again changed the notation R0 → R.
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= − 1

c2
∂2 ~P (t, R)

∂t2
+ ~∇2 ~P (t, R) + rot rot ~P (t, R) .

On the last line the sum of the first two terms is equal to zero by virtue of the wave equation. This
results in

~E = rot rot ~P (t, R) . (II.7.18)

Assume that the electric moment changes only its magnitude, but not its direction, i.e.

~d (t) = ~d0f (t) .

This is not a restriction because moment ~d of an arbitrary oscillator can be decomposed into three
mutually orthogonal directions and a field in each direction can be studied separately. Based on this
we have

~P (t, R) = ~d0

f
(
t− R

c

)

R
,

rot ~P =
f

R
rot ~d0 +

[
~∇ f
R
, ~d0

]
=

∂

∂R

(
f
(
t− R

c

)

R

)[
~R

R
, ~d0

]
=

=
1

R

∂

∂R

(
f
(
t− R

c

)

R

)[
~R, ~d0

]

as rot ~d0 = 0. In the spherical coordinate system we compute the corresponding components
∣∣∣
[
~R, ~d0

]∣∣∣ = Rd0 sin θ ,
[
~R, ~d0

]
R

=
[
~R, ~d0

]
θ

= 0 ,
[
~R, ~d0

]
φ

= −Rd0 sin θ .

and get4
(

rot ~P
)
R

=
(

rot ~P
)
θ

= 0 ,

(
rot ~P

)
φ

= −d0 sin θ
∂

∂R

(
f
(
t− R

c

)

R

)
= − sin θ

∂

∂R
P (t, R) .

Since the magnetic field components are the components of the curl of the vector potential, the
latter is written in terms of the Hertz vector (II.7.17), where we find

HR = Hθ = 0

Hφ = − sin θ
1

c

∂2P (t, R)

∂t ∂R
.

The components of curl of any vector field ~a in spherical coordinates are given by

(rot ~a)R =
1

R sin θ

(
∂

∂θ
(sin θaφ)− ∂aθ

∂R

)
;

(rot ~a)θ =
1

R sin θ

(
∂aR
∂φ
− ∂

∂R
(R sin θaφ)

)
;

(rot ~a)φ =
1

R

(
∂

∂R
(Raθ)−

∂aR
∂θ

)
.

4Note that P here is the numerical value of the Herz vector ~P .
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Using these formulae together with equation (II.7.18), we also find the components of the electric
field

ER =
1

R sin θ

∂

∂θ

[
sin θ (− sin θ)

∂

∂R
P (t, R)

]

= − 1

R sin θ

∂

∂θ

[
sin2 θ

∂P

∂R

]
= −2 cos θ

R

∂P

∂R
;

Eθ = − 1

R sin θ
sin θ

∂

∂R

[
R (− sin θ)

∂

∂R
P (t, R)

]
=

=
sin θ

R

∂

∂R

(
R
∂P

∂R

)
;

Eφ = 0 .

From the above expressions we can see that electric and magnetic fields are always perpendicular;
magnetic lines coincide with circles parallel to the equator, while electric field lines are in the meridian
planes. Now let us further assume that

f (t) = cosωt ⇒ ~d

(
t− R

c

)
= ~d0 cosω

(
t− R

c

)

or in a complex form

~d

(
t− R

c

)
= ~d0e

iω(t−Rc ) . (II.7.19)

Then

∂P

∂R
=

∂

∂R

(
d0e

iω(t−Rc )

R

)
= − 1

R2
d0e

iω(t−Rc ) − iω

c

1

R
d0e

iω(t−Rc ) =

= −
(

1

R
+
iω

c

)
P (R, t) ,

and

∂

∂R

(
R
∂P

∂R

)
= − ∂

∂R

[(
1 +

iωR

c

)
P

]
=

(
1

R
+
iω

c
− ω2R

c

)
P .

Thus, for this particular case we get the following result

Hφ =
iω

c
sin θ

(
1

R
+
iω

c

)
P (R, t) ;

ER = 2 cos θ

(
1

R2
+
iω

cR

)
P (R, t) ;

Eθ = sin θ

(
1

R2
+
iω

cR
− ω2

c2

)
P (R, t) .

These are the exact expressions for electromagnetic fields of a harmonic oscillator. They are com-
plicated and we will look more closely only on what happens close and far away from the oscillator.
To do that we will aid ourselves with the concept of a characteristic scale, which is determined by
the competition between

1

R
and

ω

c
=

2π

Tc
=

2π

λ
,

where T and λ are the period and the wavelength of the electromagnetic wave, respectively.
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Close to the oscillator

By “close to the oscillator" we mean:

R� λ

2π
or

1

R
� ω

c
=

2π

λ
,

i.e. distances from oscillator are smaller than the wavelength. Thus we can simplify

ω

(
t− R

c

)
= ωt−Rω

c
= ωt− 2πR

λ
≈ ωt ,

so that

P (t, R) =
d
(
t− R

c

)

R
≈ d (t)

R
.

Using the “close to oscillator condition", fields are determined by the electric moment d (t) and its
derivative ∂d

∂t without retarding

Hφ ≈
iω

c
sin θ

P

R
≈ iω

c
sin θ

d (t)

R2
=

1

c

sin θ

R2

∂d (t)

∂t
,

because iωd (t) = ∂d(t)
∂t , which follows from the particular choice of the time dependence of the

oscillator that we have made in (II.7.19). Similarly in this limit the electric field components become

ER =
2 cos θ

R2
P =

2 cos θ

R3
d (t) ;

Eθ =
sin θ

R2
P =

sin θ

R3
d (t) .

At any given moment t, this is a field of a static dipole. For the magnetic field we find

~H =
1

cR3

∂ ~d (t)

∂t
× ~R =

J

cR3
~̀× ~R .

Given that this introduced current J obeys J~̀= ∂~d(t)
∂t , this expression gives the magnetic field of a

current element of length `. This is known as the Biot-Savart law5.

Far away from the oscillator

Let us now consider the region far away from the oscillator, i.e. the region where

R� λ

2π
or

1

R
� ω

c
=

2π

λ
.

Distances greater than the wavelength are called wave-zone. In this particular limit our field com-
ponents become

Hφ = −ω
2

c2
sin θP = −ω

2

c2
sin θ

d
(
t− R

c

)

R
;

ER = 0 ;

Eθ = −ω
2

c2
sin θ

d
(
t− R

c

)

R
= Hφ .

Thus summarizing we get
ER = Eφ = HR = Hθ = 0 ,

5Note that E ∼ 1
R3 and H ∼ 1

R2 .

174



and

Eθ = Hφ = −ω
2 sin θ

c2R
d0 cosω

(
t− R

c

)
,

or

Eθ = Hφ =
sin θ

c2R

∂2d
(
t− R

c

)

∂t2
.

This last result is valid for any arbitrary d (t), not necessarily d0f (t), because we can always perform
a harmonic Fourier decomposition of any function. Thus in the wave zone the electric and magnetic
fields are equal to each other and vanish as 1

R . Additionally, vectors ~E, ~H, and ~R are perpendicular6.
Note that the phase of ~E and ~H, i.e. ω

(
t− R

c

)
moves with the speed of light.

Thus, in the wave zone of the oscillator an electromagnetic wave is propagating!

λ = cT =
2πc

ω
.

This wave propagates in the radial direction, i.e. its phase depends on the distance to the center.

Let us now look at the Poynting vector

S =
c

4π

∣∣∣
[
~E, ~H

]∣∣∣ =
c

4π
EH =

1

4π

sin2 θ

c3R2

(
∂2d

(
t− R

c

)

∂t2

)2

,

where on the first step we have used the fact that the electric and the magnetic fields are perpen-
dicular. Additionally note that the second derivative with respect to time inside the square is an
acceleration. Energy flux through the sphere of radius R is

Σ =

2π∫

0

π∫

0

SR2 sin θdφdθ =

=

2π∫

0

π∫

0

1

4π

sin2 θ

c3R2

(
∂2d

(
t− R

c

)

∂t2

)2

R2 sin θdφdθ =
2

3c3

[
∂2d

(
t− R

c

)

∂t2

]2

=
2

3c3
d̈2 .

For d
(
t− R

c

)
= d0 cosω

(
t− R

c

)
the flux for one period is

T∫

0

Σ dt =
2

3c3
d2

0ω
4

T∫

0

cos2 ω

(
t− R

c

)
dt =

=
d2

0ω
4T

3c3
=

2πd2
0ω

3

3c3
=

2πd2
0

3

(
2π

λ

)3

.

The averaged radiation in a unit time is then

〈 Σ 〉 =
1

T

T∫

0

Σdt =
cd2

0

3

(
2π

λ

)4

. (II.7.20)

Thus, the oscillator continuously radiates energy into surrounding space with average rate 〈 Σ 〉 ∼
d2

0
1
λ4 . In particular this explains that when transmitting radio signals by telegraphing one should

6Note that ~E, ~H and ~R have completely mismatching components i.e. if one vector has a particular non-zero
component, for the other two this component is zero.
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use waves of relatively short wavelengths7 (or equivalently high frequencies ω). On the other hand,
radiation of low frequency currents is highly suppressed, which explains the effect of the sky appearing
in blue, which is to the high frequency end of the visible light8 spectrum.

Lastly, let us finally focus on the concept of resistance to radiation, which is given by Rλ such
that

〈 Σ 〉 = Rλ〈 J2 〉 .

Recall that we have previously defined J such that it obeys J~̀=
∂~d(t−Rc )

∂t . Using this definition, we
get

〈 J2 〉 =
1

T

T∫

0

J2dt =
1

T`2

T∫

0

(
∂~p
(
t− R

c

)

∂t

)2

dt =

=
1

T`2

T∫

0

d2
0ω

2 sin2 ω

(
t− R

c

)
dt =

d2
0ω

2

T`2
π

ω
=
πd2

0ω
2

`2 2π
ω ω

=
d2

0ω
2

2`2
.

Using the result (II.7.20), it is now easy to find Rλ

Rλ =
cd2

0

3

(
2π

λ

)4
2`2

d2
0ω

2
=

2c

3`2

(
2π

λ

)4
1

(
2π
λ c
)2 =

2

3c

(
2π`

λ

)2

.

7.4 Applicability of classical electrodynamics

We conclude this section by pointing out the range of applicability of classical electrodynamics.

The energy of the charge distribution in electrodynamics is given by

U =

∫
dV ρ(x)ϕ(x) .

Putting electron at rest, one can assume that the entire energy of the electron coincides with its
electromagnetic energy (electric charge is assumed to be homogeneously distributed over a ball of
the radius re)

mc2 ∼ e2

re
,

where m and e are the mass and the charge of electron. Thus, we can define the classical radius of
electron

re =
e2

mc2
.

In SI units it reads as re = 1
4πε0

e2

mc2 ∼ 2.818 · 10−15 m . At distances less than re, the classical
electrodynamics is not applicable.

In reality, due to quantum effects the classical electrodynamics fails even at larger distances. The
characteristic scale is the Compton wavelength λe, which is the fundamental limitation on measuring

7Generally these range from tens of meters to tens of kilometers.
8In this case charge polarized chemical bonds between the atoms in the particles in the atmosphere act as little

oscillators.
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the position of a particle taking both quantum mechanics and special relativity into account. Its
theoretical value is given by

λe =
~
mc
∼ 137 re ∼ 10−13 m ,

where α = 1
137 = e2

~c is the fine structure constant for electromagnetism. The most recent experi-
mental measurement of Compton wavelength (CODATA 2002) is one order of magnitude larger and
is approximately equal to 2.426 · 10−12 m.

7.5 Darvin’s Lagrangian

In classical mechanics a system of interacting particles can be described by a proper Lagrangian
which depends on coordinates and velocities of all particles taken at the one and the same moment.
This is possible because in mechanics the speed of propagation of signals is assumed to be infinite.

On the other hand, in electrodynamics field should be considered as an independent entity having
its own degrees of freedom. Therefore, if one has a system of interacting charges (particles) for its
description one should consider a system comprising both these particles and the field. Thus, taking
into account that the propagation speed of interactions is finite, we arrive at the conclusion that the
rigorous description of a system of interacting particles with the help of the Lagrangian depending
on their coordinates and velocities but do not containing degrees of freedom related to the field is
impossible.

However, if velocities v of all the particles are small with respect to the speed of light, then such
a system can be approximately described by some Lagrangian. The introduction of the Lagrangian
function is possible up to the terms of order v2

c2 . This is related to the fact that radiation of
electromagnetic waves by moving charges (that is an appearance of independent field) arises in the
third order of vc only.

At zero approximation, i.e. by completely neglecting retarding of the potentials, the Lagrangian
for a system of charges has the form

L(0) =
∑

i

miv
2
i

2
−
∑

i>j

eiej
rij

.

The second term is the potential energy of non-moving charges.

In order to find higher approximation, we first write the Lagrangian for a charge ei in an external
electromagnetic field (ϕ, ~A):

Li = −mc2
√

1− v2
i

c2
− eiϕ+

ei
c

( ~A · ~vi) .

Picking up one of the charges, we determine electromagnetic potentials created by all the other
charges in a point where this charge sits and express them via coordinates and velocities of the
corresponding charges (this can be done only approximately: ϕ can be determined up to the order
v2

c2 and ~A up to v
c ). Substituting the found expressions for the potentials in the previous formula,

we will find the Lagrangian for the whole system.

Consider the retarded potentials

ϕ(x, t) =

∫
d3x′dt′

δ
(
t′ + |x−x′|

c − t
)

|x− x′| ρ(x′, t′) ,
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~A(x, t) =
1

c

∫
d3x′dt′

δ
(
t′ + |x−x′|

c − t
)

|x− x′|
~j(x′, t′) .

As before, integrating over t′ we get

ϕ(x, t) =

∫
d3x′

ρ
(
t− |x−x

′|
c

)

|x− x′| , ~A(x, t) =
1

c

∫
d3x′

~j
(
t− |x−x

′|
c

)

|x− x′| .

If velocities of all the charges are small in comparison to the speed of light, then the distribution
of charges does not change much for the time |x−x

′|
c . Thus, the sources can be expanded in series in

|x−x′|
c . we have

ϕ(x, t) =

∫
d3x′

ρ(t)

R
− 1

c

∂

∂t

∫
d3x′ ρ(t) +

1

2c2
∂2

∂t2

∫
d3x′Rρ(t) + . . .

where R = |x − x′|. Since
∫

d3x′ ρ(t) is a constant charge of the system, we have at leading and
subleading orders the following expression for the scalar potential

ϕ(x, t) =

∫
d3x′

ρ(t)

R
+

1

2c2
∂2

∂t2

∫
d3x′Rρ(t) .

Analogous expansion takes place for the vector potential. Since expression for the vector potential
via the current already contains 1/c and after the substitution in the Lagrangian is multiplied by
another power 1/c, it is enough to keep in the expansion of ~A the leading term only, i.e.

~A =
1

c

∫
dx′

ρ~v

R
.

If the field is created by a single charge, we have

ϕ =
e

R
+

e

2c2
∂2R

∂t2
, ~A =

e~v

cR
.

To simplify further treatment, we will make the gauge transformation

ϕ′ = ϕ− 1

c

∂χ

∂t
, ~A′ = ~A+ ~∇χ ,

where
χ =

e

2c

∂R

∂t
.

This gives

ϕ′ =
e

R
, ~A′ =

e~v

cR
+

e

2c
~∇∂R
∂t

.

Here ~∇∂R
∂t = ∂

∂t
~∇xR and ~∇xR =

~R
R = ~n, where ~n is the unit vector directed from the charge to the

observation point. Thus,

~A′ =
e~v

cR
+

e

2c

∂

∂t

(
~R

R

)
=
e~v

cR
+

e

2c

(
~̇R

R
−
~RṘ

R2

)
=
e~v

cR
+

e

2c

(
−~v
R
−
~RṘ

R2

)
.

Finally, since R2 = ~R2, we find RṘ = ~R · ~̇R = −~R · ~v. In this way we find

ϕ′ =
e

R
, ~A′ =

e
[
~v + (~v · ~n)~n

]

2cR
.
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If the field is created by several charges then this expression must be summed for all the charges.

Now substituting the potentials created by all the other charges into the Lagrangian for a given
charge ei we obtain

Li =
miv

2
i

2
+

1

8

miv
4
i

c2
− ei

∑

j 6=i

ej
rij

+
ei

2c2

∑

j 6=i

ej
rij

[
(~vi · ~vj) + (~vi · ~nij)(~vj · ~nij)

]
.

Here we have also expanded the relativistic Lagrangian for the point particle up to the order v2

c2 .
From this expression we can find the total Lagrangian

L =
∑

i

miv
2
i

2
+
∑

i

miv
4
i

8c2
−
∑

i>j

eiej
rij

+
∑

i>j

eiej
2c2rij

[
(~vi · ~vj) + (~vi · ~nij)(~vj · ~nij)

]
.

This Lagrangian was obtained by Darvin in 1922 and it expresses an effect of electromagnetic
interaction between charges up to the second order in v

c .

It is interesting to find out what happens if we expand the potential further. For the scalar
potential at third order in 1/c and for the vector potential at second order in 1/c one finds

ϕ(3) = − 1

6c3
∂3

∂t3

∫
d3x′ R2ρ , ~A(2) = − 1

c2
∂

∂t

∫
d3x′~j .

Performing a gauge transformation

ϕ′ = ϕ− 1

c

∂χ

∂t
, ~A′ = ~A+ ~∇χ

with

χ = − 1

6c2
∂2

∂t2

∫
d3x′ R2ρ ,

we transform ϕ(3) into zero. The new vector potential will take the form

~A
′(2) = − 1

c2
∂

∂t

∫
d3x′~j − 1

6c2
∂2

∂t2
~∇
∫

d3x′ R2ρ

= − 1

c2
∂

∂t

∫
d3x′~j − 1

3c2
∂2

∂t2

∫
d3x′ ~Rρ =

= − 1

c2

∑
e~̇v − 1

3c2
∂2

∂t2

∫
d3x′ (~R0 − ~r)ρ = − 2

3c2

∑
e~̇v . (II.7.21)

In the last formula we pass to the discrete distribution of charges. This potential leads to a vanishing
magnetic field ~H = rot x ~A

′(2), as curl is taken with respect to the coordinates x of observation point
which ~A

′(2) does not depend on. For the electric field one finds ~E = − ~̇A′(2)/c, so that

~E =
2

3c3

...
~d ,

where ~d is the dipole moment of the system. Thus, additional terms of the third order in the
expansion of fields lead to the appearance of additional forces which are not contained in Darvin’s
Lagrangian; these forces do depend on time derivatives of charge accelerations.

Compute the averaged work performed by fields for one unit of time. Each charge experienced a
force ~F = e ~E so that

~F =
2e

3c3

...
~d .
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The work produced is

∑
(~F · ~v) =

2e

3c3
(
...
~d ·
∑

e~v) =
2

3c2
(
...
~d · ~̇d) =

2

3c3
d

dt
(ḋ · ~̈d)− 2

3c3
~̈d2 .

Performing time average we arrive at

∑
(~F · ~v) = − 2

3c3
~̈d2 .

Now one can recognize that the expression of the right hand side of the last formula is nothing else
but the average radiation of the system for one unit of time. Thus, the forces arising at third order
describe the backreaction which radiation causes on charges. These forces are known as bracing by
radiation or Lorentz friction forces.
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7.6 Trigonometric formulae

Some important trigonometric formulae

sin(x± y) = sinx cos y ± sin y cosx

cos(x± y) = cosx cos y ∓ sinx sin y

sinx± sin y = 2 sin
x± y

2
cos

x∓ y
2

cosx+ cos y = 2 cos
x+ y

2
cos

x− y
2

cosx− cos y = −2 sin
x+ y

2
sin

x− y
2

7.7 Helmholtz theorem

A vector field can be reconstructed from its curl and divergence. More precisely, the Helmholtz
theorem takes place.

The Helmholtz theorem. An arbitrary vector field ~A(~x) can always be decomposed into the sum
of two vector fields: one with zero divergence and one with zero curl,

~A = ~A⊥ + ~A|| ,

where
~∇ · ~A⊥ = 0 , ~∇× ~A|| = 0 .

An explicit representation of special interest is

~A(~x) = ~∇× 1

4π

∫
d3x′

~∇′ × ~A(~x′)
|~x− ~x′| −

~∇ 1

4π

∫
d3x′

~∇′ · ~A(~x′)
|~x− ~x′| .

This representation expresses the vector field via its curl and divergence.

Here is the proof. Suppose ~A(~x) is a vector for which its divergence and its curl are known, that is

~∇ · ~A = f , ~∇× ~A = ~K , (III.7.1)

where a function f and a vector ~K are given. The question is how to reconstruct from this data the
field ~A. This can be done as follows. We take the curl of the second equation in (III.7.1) and obtain

~∇× (~∇× ~A) = ~∇× ~K .

Now for the left hand side we apply the known formula ~∇× (~∇× ~A) = ~∇(~∇ · ~A)−∆ ~A, so that

~∇(~∇ · ~A)−∆ ~A = ~∇f −∆ ~A = ~∇× ~K .

From here we get the Poisson equation for each component of ~A

∆ ~A = ~∇f − ~∇× ~K = −4π

[
1

4π
~∇× ~K − 1

4π
~∇f
]
.

This equation has a unique solution given by

~A(~x) =
1

4π

∫
d3x′

~∇′ × ~K(~x′)
|~x− ~x′| −

1

4π

∫
d3x′

~∇′f(~x′)
|~x− ~x′| .
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Further, we integrate the derivatives by parts, omit the boundary terms9 and then replace the
gradient ~∇′ taken with respect to ~x′ by ~∇ taken with respect to ~x

~A(~x) = − 1

4π

∫
d3x′~∇′

(
1

|~x− ~x′|

)
× ~K(~x′) +

1

4π

∫
d3x′~∇′

(
1

|~x− ~x′|

)
f(~x′)

=
1

4π
~∇×

∫
d3x′

~K(~x′)
|~x− ~x′| −

1

4π
~∇
∫
d3x′

f(~x′)
|~x− ~x′| .

Now we can substitute here the expressions (III.7.1) and obtain the statement of the Helmholtz
theorem

~A(~x) =
1

4π
~∇×

∫
d3x′

~∇′ ×A(~x′)
|~x− ~x′| −

1

4π
~∇
∫
d3x′

~∇′ · ~A(~x′)
|~x− ~x′| . (III.7.2)

7.8 Tensors

Many geometric and physical quantities can be described only as a set of functions depending on a
chosen coordinate system (x1, . . . , xn). The representation of these quantities may drastically change
if another coordinate system is chosen (z1, . . . , zn):

xi = xi(z1, . . . , zn) , i = 1, . . . , n.

Vectors

Consider, for instance, a velocity vector along a given curve zj = zj(t). In z-coordinates the
components of the velocity vector are

(
dz1

dt
, . . . ,

dzn

dt

)
= (η1, . . . , ηn) .

In the other coordinate system we will have
(
dx1

dt
, . . . ,

dxn

dt

)
= (ξ1, . . . , ξn) .

Obviously,
dxi

dt
=

n∑

j=1

∂xi

∂zj
dzj

dt
.

Therefore, for the components of the velocity vector one finds

ξi =

n∑

j=1

ηj
∂xi

∂zj
.

Here ξi are components of the vector in coordinates (x1, . . . , xn) at a given point, while ηi are
components of the vector in coordinates (z1, . . . , zn) at the same point.

Co-vectors

Consider the gradient of a function f(x1, . . . , xn):

∇f =

(
∂f

∂x1
, . . . ,

∂f

∂xn

)
= (ξ1, . . . , ξn) .

9We assume that they vanish as the boundary tends to infinity.
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In z-coordinates one has
∇f =

(
∂f

∂z1
, . . . ,

∂f

∂zn

)
= (η1, . . . , ηn) .

Obviously,
∂f

∂zi
=

n∑

j=1

∂f

∂xj
∂xj

∂zi
=⇒ ηi =

∂xj

∂zi
ξj .

To compare vector and co-vector transformation laws, let us introduce the Jacobi matrix A with
elements Aij = ∂xi

∂zj . It is convenient to think about a vector as being a column and about a co-vector
as being a row, i.e. transposed column. Then we have

Velocity vector ξ = Aη ,

Gradient ηt = ξtA .

After taking transposition of the second line, we get

Velocity vector ξ = Aη ,

Gradient η = Atξ .

This clearly shows that vectors and co-vectors have different transformation laws.

Metric

Recall that the length of a curve is the length of the velocity vector integrated over time. Therefore,
in order for the length to be an invariant quantity, that is not to depend on a choice of the coordinate
system, the square of the length of the velocity vector

|v|2 = gijξ
iξj

should be independent of the coordinates chosen. This requirement together with the transformation
law for vectors leads to the following transformation law for the metric under general coordinate
transformation

g′ij(z) = gkl(x)
∂xk

∂zi
∂xl

∂zj
, xi = xi(z) .

Metric constitutes an example of a second rank tensor (it has two indices) with two lower indices,
both of them transforming in the co-vector fashion.

These examples of tensorial objects can be continued. For instance, a linear operator Aji represents
an example of a tensor with one index up and another index down signifying that under general
coordinate transformations the index j transforms in the same way as the index of a vector, while i
transforms in the same way as the index of a co-vector.

Tensor fields

Let us associate to each point x of space-time a collection of numbers encoded into an object (tensor)
φ
j1...jq
i1...ip

(x) with p upper indices transforming in the vector fashion and q lower indices transforming
in the co-vector one. This object is called a tensor field of (p, q)-type if under a transformation of
coordinates xµ: xµ → x′µ(xν), it transforms as follows10

φ′µ1...µp
ν1...νq (x

′) =
∂x′µ1

∂xλ1
· · · ∂x

′µp

∂xλp
∂xρ1

∂x′ν1
· · · ∂x

ρq

∂x′νq
φλ1...λp

ρ1...ρq (x) .

10There is a simple rule to memorise the appearance of primed and unprimed indices in the tensor transformation
rule. Assuming that all indices on the left hand side of the tensor transformation formula are ‘primed’, the ‘primed’
coordinates corresponding to these primed indices must appear on the right hand side and in the same position.
Notationally we keep sets of upper and lower indices shifted with respect to each other to prevent possible confusion
on their position under lowering or raising, respectively.

184



Here tensor indices are acted with the matrices ∂x
′µ

∂xν which form a group GL(d,R). This is a group of
all invertible real d× d matrices. Further restrictions on possible transformations of coordinates can
be imposed by physical requirements. For instance, Galilean covariance restricts general coordinate
transformations to that of the rotation group. Analogously, Einstein relativity principle allows only
for Lorentz transformations. In this case one speaks about tensors on the rotation group, Lorentz
group, etc.

The simplest example is a scalar field that does not carry any indices. Its transformation law under
coordinate transformations is φ′(x′) = φ(x). We stress that a point with coordinates x in the original
frame and a point with coordinates x′ in the transformed frame is the one and the same geometric
point.

Properties of the Levi-Civita tensor

εkilεmpq =

∣∣∣∣∣∣

δkm δim δlm
δkp δip δlp
δkq δiq δlq

∣∣∣∣∣∣
. (III.7.3)

Single sum over repeated index i

εijkεimn = δjmδkn − δjnδkm . (III.7.4)

7.9 Functional derivative

Let F [f ] be a functional and η is a differentiable function. The functional derivative δF ≡ δF
δf(x) is

a distribution defined for a test function η as

〈δF, η〉 = lim
ε→0

d

dε
F [f + εη] .

Consider for instance the following functional

F [x(t)] =
1

2

∫
dt gij(x(t))ẋiẋj .

Here gij(x) is a metric on a smooth n-dimensional manifold Mn which has local coordinates xk(t).
Then

〈δF, η〉 = lim
ε→0

d

dε

1

2

∫
dt gij(x(t) + εη)(ẋi + εη̇i)(ẋj + εη̇j) =

= lim
ε→0

d

dε

1

2

∫
dt
[
gij(x) + ε

∂gij
∂xk

ηk + . . .
][
ẋiẋj + 2εẋiη̇j + . . .

]

=

∫
dt
[
− d

dt
(gikẋ

i) +
1

2

∂gij
∂xk

ẋiẋj
]
ηk .

Thus, for the corresponding variational derivative we find

δF

δxk(t)
= − d

dt
(gikẋ

i) +
1

2

∂gij
∂xk

ẋiẋj = − d

dt
(gik)ẋi − gikẍi +

1

2

∂gij
∂xk

ẋiẋj .

Vanishing of this functional derivative gives an extremality condition for the corresponding func-
tional, which is nothing else but the geodesic equation

ẍi + Γiklẋ
kẋl = 0 ,
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where
Γikl =

1

2
gij
(∂gjk
∂xl

+
∂gjl
∂xk

− ∂gkl
∂xj

)

is the Christoffel symbol.

Note that a function itself, i.e. u(x), can be considered as the functional

u(x) =

∫
dxu(y)δ(x− y) .

From this one can deduce the functional derivative

δu(x)

δu(y)
= δ(x− y) .

7.10 Introduction to Lie groups and Lie algebras

To introduce a concept of a Lie group we need two notions: the notion of a group and the notion of
a smooth manifold.

Definition of a group. A set of elements G is called a group if it is endowed with two operations:
for any pair g and h from G there is a third element from G which is called the product gh, for any
element g ∈ G there is the inverse element g−1 ∈ G. The following properties must be satisfied

• (fg)h = f(gh)

• there exists an identity element I ∈ G such that Ig = gI = g

• gg−1 = I

Definition of a smooth manifold. Now we introduce the notion of a differentiable manifold. Any
set of points is called a differentiable manifold if it is supplied with the following structure

• M is a union: M = ∪qUq, where Uq is homeomorphic (i.e. a continuous one-to-one map) to
the n-dimensional Euclidean space

• Any Uq is supplied with coordinates xαq called the local coordinates. The regions Uq are called
coordinate charts.

• any intersection Uq ∩ Up, if it is not empty, is also a region of the Euclidean space where two
coordinate systems xαq and xαp are defined. It is required that any of these two coordinate
systems is expressible via the other by a differentiable map:

xαp = xαp (x1
q, · · ·xnq ) , α = 1, · · ·n

xαq = xαq (x1
p, · · ·xnp ) , α = 1, · · ·n (III.7.5)

Then the Jacobian det
(
∂xαp

∂xβq

)
is different from zero. The functions (III.7.5) are called transition

functions from coordinates xαq to xαp and vice versa. If all the transition functions are infinitely
differentiable (i.e. have all partial derivatives) the corresponding manifold is called smooth.

Definition of a Lie group: A smooth manifold G of dimension n is called a Lie group if G is
supplied with the structure of a group (multiplication and inversion) which is compatible with the
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structure of a smooth manifold, i.e., the group operations are smooth. In other words, a Lie group
is a group which is simultaneously a smooth manifold and the group operations are smooth.

The list of basic matrix Lie groups

• The group of n× n invertible matrices with complex or real matrix elements:

A = aji , detA 6= 0

It is called the general linear group GL(n,C) or GL(n,R). Consider for instance GL(n,R).
Product of two invertible matrices is an invertible matrix is invertible; an invertible matrix has
its inverse. Thus, GL(n,R) is a group. Condition detA 6= 0 defines a domain in the space of
all matrices M(n,R) which is a linear space of dimension n2. Thus, the general linear group
is a domain in the linear space Rn2

. Coordinates in M(n,R) are the matrix elements aji . If A
and B are two matrices then their product C = AB has the form

cji = aki b
j
k

It follows from this formula that the coordinates of the product of two matrices is expressible
via their individual coordinates with the help of smooth functions (polynomials). In other
words, the group operation which is the map

GL(n,R)×GL(n,R)→ GL(n,R)

is smooth. Matrix elements of the inverse matrix are expressible via the matrix elements of
the original matrix as no-where singular rational functions (since detA 6= 0) which also defines
a smooth mapping. Thus, the general Lie group is a Lie group.

• Special linear group SL(n,R) or SL(n,C) is a group of real or complex matrices satisfying the
condition

detA = 1 .

• Special orthogonal group SO(n,R) or SO(n,C) is a group or real or complex matrices satisfying
the conditions

AAt = I , detA = 1 .

• Pseudo-orthogonal groups SO(p, q). Let g will be pseudo-Euclidean metric in the space Rnp,q
with p+ q = n. The group SO(p, q) is the group of real matrices which preserve the form g:

AgAt = g , detA = 1 .

• Unitary group U(n) – the group of unitary n× n matrices:

UU† = I .

• Special unitary group SU(n) – the group of unitary n× n matrices with the unit determinant

UU† = I , detU = 1 .

• Pseudo-unitary group U(p, q):
AgA† = g ,

where g is the pseudo-Euclidean metric. Special pseudo-unitary group requires in addition the
unit determinant detA = 1.
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• Symplectic group Sp(2n,R) or Sp(2n,C) is a group or real or complex matrices satisfying the
condition

AJAt = J

where J is 2n× 2n matrix

J =

(
0 I
−I 0

)

and I is n× n unit matrix.

Question to the class: What are the eigenvalues of J? Answer:

J = diag(i, · · · i;−i, · · · ,−i).

Thus, the group Sp(2n) is really different from SO(2n)!

The powerful tool in the theory of Lie groups are the Lie algebras. Let us see how they arise by
using as an example SO(3). Let A be “close" to the identity matrix

A = I + εa

is an orthogonal matrix At = A−1. Therefore,

I + εat = (I + εa)−1 = I− εa+ ε2a2 + · · ·

From here at = −a. The space of matrices a such that at = −a is denoted as so(3) and called the
Lie algebra of the Lie group SO(3). The properties of this Lie algebra: so(3) is a linear space, in
so(3) the commutator is defined: if a, b ∈ so(3) then [a, b] also belongs to so(3). A linear space of
matrices is called a Lie algebra if the commutator does not lead out of this space. Commutator of
matrices naturally arises from the commutator in the group:

ABA−1B−1 = (I + εa)(I + εb)(I + εa)−1(I + εb)−1

= (I + εa)(I + εb)(I− εa+ ε2a2 + · · · )(I− εb+ ε2b2 + · · · ) =

= I + ε(a+ b− a− b) + ε2(ab− a2 − ab− ba− b2 + ab+ a2 + b2) + · · · =
= I + ε2[a, b] + · · ·

The algebra and the Lie group in our example are related as

exp a =

∞∑

n=0

an

n!
= A ∈ SO(3)

Exponential of matrix. The exponent exp a of the matrix a is the sum of the following series

exp a =

∞∑

m=0

am

m!
.

This series shares the properties of the usual exponential function, in particular it is convergent for
any matrix A. The following obvious properties are

• If matrices X and Y commute then

exp(X + Y ) = exp(X) exp(Y )
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• The matrix A = expX is invertible and A−1 = exp(−X).

• exp(Xt) = (expX)t .

Definition of a Lie algebra: A linear vector space J (over a field R or C) supplied with the
multiplication operation (this operation is called the commutator) [ξ, η] for ξ, η ∈ J is called a Lie
algebra if the following properties are satisfied

1. The commutator [ξ, η] is a bilinear operation, i.e.

[α1ξ1 + α2ξ2, β1η1 + β2η2] = α1β1[ξ1, η1] + α2β1[ξ2, η1] + α1β2[ξ1, η2] + α2β2[ξ2, η2]

2. The commutator is skew-symmetric: [ξ, η] = −[η, ξ]

3. The Jacobi identity
[[ξ, η], ζ] + [[η, ζ], ξ] + [[ζ, ξ], η] = 0

Let J be a Lie algebra of dimension n. Choose a basis e1, · · · , en ∈ J . We have

[ei, ej ] = Ckijek

The numbers Ckij are called structure constants of the Lie algebra. Upon changing the basis these
structure constants change as the tensor quantity. Let e′i = Ajiei and [e′i, e

′
j ] = C ′kij e

′
k then

C ′kijA
m
k em = AriA

s
j [er, es] = AriA

s
jC

m
rsem

Thus, the structure constants in the new basis are related to the constants in the original basis as

C ′kij = AriA
s
jC

m
rs(A

−1)km . (III.7.6)

Skew-symmetry and the Jacobi identity for the commutator imply that the tensor Ckij defines the
Lie algebra if and only if

Ckij = −Ckij , Cmp[iC
p
jk] = 0 .

Classify all Lie algebras means in fact to find all solutions of these equations modulo the equivalence
relation (III.7.6).

Example. The Lie algebra so(3,R) of the Lie group SO(3,R). It consists of 3 × 3 skew-symmetric
matrices. We can introduce a basis in the space of these matrices

X1 =




0 0 0
0 0 −1
0 1 0


 , X2 =




0 0 1
0 0 0
−1 0 0


 , X3 =




0 −1 0
1 0 0
0 0 0


 .

In this basis the Lie algebra relations take the form

[X1, X2] = X3 , [X2, X3] = X1 , [X3, X1] = X2 .

These three relation can be encoded into one

[Xi, Xj ] = εijkXk .
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Example. The Lie algebra su(2) of the Lie group SU(2). It consists of 2×2 skew-symmetric matrices.
The basis can be constructed with the help of the so-called Pauli matrices σi

σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
.

These matrices satisfy the relations

[σi, σj ] = 2iεijkσk , {σi, σj} = 2δij .

If we introduce Xi = − i
2σi which are three linearly independent anti-hermitian matrices then the

su(2) Lie algebra relations read
[Xi, Xj ] = εijkXk

Note that the structure constants are real! Comparing with the previous example we see that the
Lie algebra su(2) is isomorphic to that of so(3,R):

su(2) ≈ so(3,R) .

With every matrix group we considered above one can associate the corresponding matrix Lie
algebra. The vector space of this Lie algebra is the tangent space at the identity element of the
group. For this case the operation “commutator" is the usual matrix commutator. The tangent space
to a Lie group at the identity element naturally appears in this discussion. To understand why let
us return to the case of the Lie group GL(n,R). Consider a one-parameter curve A(t) ∈ GL(n,R),
i.e, a family of matrices A(t) from GL(n,R) which depend on the parameter t. Let this curve to
pass though the identity at t = 0, i.e., A(0) = I. Then the tangent vector (the velocity vector!)
at t = 0 is the matrix Ȧ(t)|t=0. Other way around, let X be an arbitrary matrix. Then the curve
A(t) = I + tX for t sufficiently closed to zero lies in GL(n,R). It is clear that

A(0) = I , Ȧ(0) = X .

In this way we demonstrated that the space of vectors which are tangent to the group GL(n,R) at
the identity coincide with the space of all n×n matrices. This example of GL(n,R) demonstrates a
universal connection between Lie group G and its Lie algebra: The tangent space to G at the identity
element is the Lie algebra w.r.t. to the commutator. This Lie algebra is called the Lie algebra of the
group G.

Exercise to do in the class: making infinitesimal expansion of a group element close to the identity
compute the Lie algebras for the classical matrix groups discussed above. The answer is the following
list:

The list of basic matrix Lie algebras

• The general Lie group GL(n,R) or GL(n,C) has the matrix Lie algebra which is M(n,R) or
M(n,C), where M(n) is the space of all real or complex matrices.

• Special linear group SL(n,R) or SL(n,C) has the Lie algebra sl(n,R) or sl(n,C) which coin-
cides with the space of all real or complex matrices with zero trace.

• Special orthogonal group SO(n,R) or SO(n,C) has the Lie algebra so(n,R) or so(n,C) which
are real or complex matrices satisfying the condition

Xt = −X .
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• Pseudo-orthogonal group SO(p, q) has the Lie algebra which is the algebra of matrices X
satisfying the condition

Xg + gXt = 0 .

We see that if we introduce the matrix u = Xg then the relation defining the Lie algebra reads

u+ ut = 0 .

Thus, the matrix u is skew-symmetric ut + u = 0. This map establishes the isomorphism
between so(p, q) and the space of all skew-symmetric matrices.

• Unitary group U(n) has the Lie algebra which is the space of all anti-hermitian matrices

X† = −X .

• Special unitary group SU(n) has the Lie algebra which is the space of all anti-hermitian
matrices with zero trace

X† = −X , trX = 0 .

• Pseudo-unitary group U(p, q) has the Lie algebra which is the space of all matrices obeying
the relation

Xg + gX† = 0 .

The space u(p, q) is isomorphic to the space of anti-hermitian matrices. The isomorphism is
established by the formula u = Xg. Finally the Lie algebra of the special pseudo-unitary group
is defined by further requirement of vanishing trace for X.

• The symplectic group Sp(2n,R) or Sp(2n,C) has the Lie algebra which comprises all is the is
a group or real or complex matrices satisfying the condition

XJ + JXt = 0

where J is 2n× 2n matrix

J =

(
0 I
−I 0

)

and I is n× n unit matrix.

Linear representations of Lie groups Consider an action of a Lie group a n-dimensional vector
space Rn. This action is called a linear representation of Lie group G on Rn if for any g ∈ G the
map

ρ : g → ρ(g)

is a linear operator on Rn. In other words, by a linear representation of G on Rn we call the
homomorphism ρ which maps G into GL(n,R), the group of linear transformations of Rn. The
homomorphism means that under this map the group structure is preserved, i.e.

ρ(g1g2) = ρ(g1)ρ(g2) .

Any Lie group G has a distinguished element – g0 = I and the tangent space T at this point.
Transformation

G→ G : g → hgh−1
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is called internal automorphism corresponding to an element h ∈ G. This transformation leaves
unity invariant: hIh−1 = I and it transforms the tangent space T into itself:

Ad(h) : T → T .

This map has the following properties:

Ad(h−1) = (Adh)−1 , Ad(h1h2) = Adh1Adh2 .

In other words, the map h→ Adh is a linear representation of G:

Ad : G→ GL(n,R) ,

where n is the dimension of the group.

Generally, one-parameter subgroups of a Lie group G are defined as parameterized curves F (t) ⊂ G
such that F (0) = I and F (t1 + t2) = F (t1)F (t2) and F (−t) = F (t)−1. As we have already discussed
for matrix groups they have the form

F (t) = exp(At)

where A is an element of the corresponding Lie algebra. In an abstract Lie group G for a curve F (t)
one defines the t-dependent vector

F−1Ḟ ∈ T .
If this curve F (t) is one-parameter subgroup then this vector does not depend on t! Indeed,

Ḟ =
dF (t+ ε)

dε
|ε=0 = F (t)

(dF (ε)

dε

)
ε=0

,

i.e. Ḟ = F (t)Ḟ (0) and F−1(t)Ḟ (t) = Ḟ (0) = const. Oppositely, for any non-zero a ∈ T there exists
a unique one-parameter subgroup with

F−1Ḟ = a .

This follows from the theorem about the existence and uniqueness of solutions of usual differential
equations.

It is important to realize that even for the case of matrix Lie groups there are matrices which are
not images of any one-parameter subgroup. The exercise to do in the class: Consider the following
matrix:

g =

(
−2 0

0 −3

)
∈ GL+(2,R) ,

where GL+(2,R) is a subgroup of GL(2,R) with positive determinant. Show that there does not
exist any real matrix ξ such that

eξ = g .

The answer: it is impossible because since the matrix ξ is real the eigenvalues λ1,2 of ξ must be
either real of complex conjugate. The eigenvalues of eξ are eλ1 and eλ2 . If λi are real then eλi > 0.
If λi are complex conjugate then eλi are also complex conjugate.

It is also important to realize that different vectors ξ under the exponential map can be mapped on
the one and the same group element. As an example, consider the matrices of the form

ξ = α

(
1 0
0 1

)
+ β

(
0 1
−1 0

)
,
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where α, β ∈ R. Exponent eξ can be computed by noting that
(

0 1
−1 0

)2

= −
(

1 0
0 1

)
.

Then we have
eξ = eα

[( 1 0
0 1

)
cosβ +

(
0 1
−1 0

)
sinβ

]
.

It is clear that

α

(
1 0
0 1

)
+ β

(
0 1
−1 0

)
, α

(
1 0
0 1

)
+ (β + 2πk)

(
0 1
−1 0

)

has the the same image under the exponential map. In the sufficiently small neighbourhood of 0 in
M(n,R) the map expA is a diffeomorphism. The inverse map is constructed by means of series

lnx = (x− I)− 1

2
(x− I)2 +

1

3
(x− I)3 − · · ·

for x sufficiently close to the identity.

Linear representation of a Lie algebra. Adjoint representation. Let J be a Lie algebra.
We say that a map

ρ : J →M(n,R)

defines a representation of the Lie algebra J is the following equality is satisfied

ρ[ζ, η] = [ρ(η), ρ(ζ)]

for any two vectors ζ, η ∈ J .

Let F (t) be a one-parameter subgroup in G. Then g → FgF−1 generates a one-parameter group of
transformations in the Lie algebra

AdF (t) : T → T .

The vector d
dtAdF (t)|t=0 lies in the Lie algebra. Let a ∈ T and let F (t) = exp(bt) then

d

dt
AdF (t)|t=0 a =

d

dt

(
exp(bt)a exp(−bt)

)
|t=0 = [b, a]

Thus to any element b ∈ J we associate an operator adb which acts on the Lie algebra:

adb : J → J , adba = [b, a] .

This action defines a representation of the Lie algebra on itself. This representation is called adjoint.
To see that this is indeed representation we have to show that it preserves the commutation relations,
i.e. that from [x, y] = z it follows that

[adx, ady] = adz .

We compute

[adx, ady]w = adx adyw − ady adxw = [x, [y, w]]− [y, [x,w]] = [x, [y, w]] + [y, [w, x]] =

− [w, [x, y]] = [[x, y], w] = [z, w] = adzw .

Here the Jacobi identity has been used.
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Semi-simple and simple Lie algebras. General classification of Lie algebras is a very complicated
problem. To make a progress simplifying assumptions about the structure of the algebra are needed.
The class of the so-called simple and semi-simple Lie algebras admits a complete classification.

A Lie subalgebra H of a Lie algebra J is a linear subspace H ⊂ J which is closed w.r.t. to the
commutation operation. An ideal H ⊂ J is a subspace in J such that for any x ∈ J the following
relation holds

[x,H] ⊂ H .
A Lie algebra J which does not have any ideals except the trivial one and the one coincident with J
is called simple. A Lie algebra which have no commutative (i.e. abelian) ideals is called semi-simple.
One can show that any semi-simple Lie algebra is a sum of simple Lie algebras. Consider for instance
the Lie algebra u(n) which is the algebra of anti-hermitian matrices

u+ u† = 0 .

The Lie algebra su(n) is further distinguished by imposing the condition of vanishing trace: tru = 0.
The difference between u(n) and su(n) constitute all the matrices which are proportional to the
identity matrix iI. Since

[λiI, u] = 0

the matrices proportional to iI form an ideal in u(n) which is abelian. Thus, u(n) has the abelian
ideal and, therefore, u(n) is not semi-simple. In opposite, su(n) has no non-trivial ideals and
therefore it is the simple Lie algebra.

A powerful tool in the Lie theory is the so-called Cartan-Killing from on a Lie algebra. Consider
the adjoint representation of J . The Cartan-Killing form on J is defined as

(a, b) = −tr(adaadb)

for any two a, b ∈ J . The following central theorem in the Lie algebra theory can be proven: A Lie
algebra is semi-simple if and only if its Cartan-Killing form is non-degenerate.

For a simple Lie algebra J of a group G the internal automorphisms Adg constitute the linear
irreducible representation (i.e. a representation which does not have invariant subspaces) of G in J .
Indeed, if Ad(g) has an invariant subspace H ⊂ J , i.e. gHg−1 ⊂ H for any g then sending g to the
identity we will get

[J ,H] ⊂ H
i.e. H is an ideal which contradicts to the assumption that J is the semi-simple Lie algebra.

Cartan subalgebra. To demonstrate the construction of the adjoint representation and introduce
the notion of the Cartan subalgebra of the Lie algebra we use the concrete example of su(3). The Lie
algebra su(3) comprises the matrices of the form iM , where M is traceless 3× 3 hermitian matrix.
The basis consists of eight matrices which we chose to be the Gell-Mann matrices:

λ1 =




0 1 0
1 0 0
0 0 0


 , λ2 =




0 −i 0
i 0 0
0 0 0


 , λ3 =




1 0 0
0 −1 0
0 0 0




λ4 =




0 0 1
0 0 0
1 0 0


 , λ5 =




0 0 −i
0 0 0
i 0 0


 , λ6 =




0 0 0
0 0 1
0 1 0




λ7 =




0 0 0
0 0 −i
0 0 0


 , λ8 =

1√
3




1 0 0
0 1 0
0 0 −2


 .
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There are two diagonal matrices among these: λ3 and λ8 which we replace by Tz = 1
2λ3 and

Y = 1√
3
λ8. We introduce the following linear combinations of the generators

t± =
1

2
(λ1 ± iλ2) , v± =

1

2
(λ4 ± iλ5) , u± =

1

2
(λ6 ± iλy) .

One can easily compute, e.g.,

[t+, t+] = 0 , [t+, t−] = 2tz, [t+, tz] = −t+ , [t+, u+] = v+ , [t+, u−] = 0 ,

[t+, v+] = 0 , [t+, v−] = −u− , [t+, y] = 0 .

Since the Lie algebra of su(3) is eight-dimensional the adjoint representation is eight-dimensional
too. Picking up (t+, t−, tz, u+, u−, v+, v−, y) as the basis we can realize the adjoint action by 8× 8
matrices. For instance,

adt+




t+
t−
tz
u+

u−
v+

v−
y




=




0 0 0 0 0 0 0 0
0 0 2 0 0 0 0 0
−1 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 −1 0 0 0
0 0 0 0 0 0 0 0




︸ ︷︷ ︸
matrix realization of t+




t+
t−
tz
u+

u−
v+

v−
y




Note that both adtz and ady are diagonal. Thus, if x = atz +by then adx is also diagonal. Explicitly
we find

adx =




a 0 0 0 0 0 0 0
0 −a 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 − 1

2a+ b 0 0 0 0
0 0 0 0 1

2a− b 0 0 0
0 0 0 0 0 1

2a+ b 0 0
0 0 0 0 0 0 − 1

2a− b 0
0 0 0 0 0 0 0 0




.

In other words, the basis elements (t+, t−, tz, u+, u−, v+, v−, y) are all eigenvectors of adx with
eigenvalues a,−a, 0,− 1

2a + b, 1
2a − b,− 1

2a − b and 0 respectively. The procedure we followed in
crucial for analysis of other (larger) Lie algebras. We found a two-dimensional subalgebra generated
by tz and y which is abelian. Further, we have chosen a basis for the rest of the Lie algebra such
that each element of the basis is an eigenvector of adx if x is from this abelian subalgebra. This
abelian subalgebra is called the Cartan subalgebra.

In general the Cartan subalgebra H is determined in the following way. An element h ∈ H is
called regular if adh has as simple as possible number of zero eigenvalues (i.e. multiplicity of zero
eigenvalue is minimal). For instance, for su(3) the element adtz has two zero eigenvalues, while ady
has for zero eigenvalues. Thus, the element adtz is regular, while ady is not. A Cartan subalgebra is
a maximal commutative subalgebra which contains a regular element. In our example the subalgebra
generated by tz and y is commutative and its maximal since there is no other element we can add
to it which would not destroy the commutativity.

Roots. It is very important fact proved in the theory of Lie algebras that any simple Lie algebra
has a Cartan subalgebra and it admits a basis where each basis vector is an eigenstate of all Cartan
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generators; the corresponding eigenvalues depend of course on a Cartan generator. In our example
of su(3) for an element x = atz + by we have

adxt+ = at+

adxt− = at−
adxtz = 0tz

adxu+ = (−1

2
a+ b)u+

adxu− = (
1

2
a− b)u−

adxv+ = (
1

2
a+ b)v+

adxv− = (−1

2
a− b)v−

adxy = 0y .

We see that all eigenvalues are linear functions of the Cartan element x, in other words, if we denote
by eα the six elements t±, v±, u± and by hi the two Cartan elements tz, y we can write all the
relations above as

[hi, hj ] = 0

[hi, eα] = α(hi)eα ,

where α(hi) is a linear function of hi. The generators eα, which are eigenstates of the Cartan
subalgebra, are called root vectors, while the corresponding linear functions α(h) are called roots.
To every root vector eα we associate the root α which is a linear function on the Cartan sualgebra
H. Linear functions on H, by definition, form the dual space H∗ to the Cartan subalgebra H.

The Cartan-Weyl basis. Now we can also investigate what is the commutator of the root vectors.
By using the Jacobi identity we find

[h, [eα, eβ ]] = −[eα, [eβ , h]]− [eβ , [h, eα]] = (α(h) + β(h))[eα, eβ ] .

This clearly means that there are three distinct possibilities

• [eα, eβ ] is zero

• [eα, eβ ] is a root vector with the root α+ β

• α + β = 0 in which case [eα, eβ ] commutes with every h ∈ H and, therefore, is an element of
the Cartan subalgebra.

Thus,
[eα, eβ ] = Nαβeα+β

if α+ β is a root,
[eα, e−α] ∼ hα

and [eα, eβ ] = 0 if α+ β is not a root. The numbers Nαβ depend on the normalization of the
root vectors. The basis (hi, eα) of a Lie algebra with the properties described above is called
the Cartan-Weyl basis.
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